	– Boyacá		
Gustav	o Alejandro N	liño Castro	

Universidad de Boyacá
Facultad de Ciencias e Ingeniería
Programa de Ingeniería Sanitaria
Tunja
2023

Evaluación y optimización de la línea de aducción del acueducto del municipio de Belén - Boyacá

Gustavo Alejandro Niño Castro

Trabajo de grado para optar al título de: Ingeniero Sanitario

Director (a):

David Felipe Bermúdez

Ingeniero Sanitario - Ambiental

Codirector (a):

Catherin Dayani Caro

Magister en Ingeniería Ambiental

Universidad de Boyacá
Facultad de Ciencias e Ingeniería
Programa de Ingeniería Sanitaria
Tunja
2023

Nota de aceptación:
Firma del presidente del Jurado
Firma del Jurado
Firma del Jurado

EVALUACIÓN Y OPTIMIZACIÓN LÍNEA ADUCCIÓN ACUEDUCTO BELÉN

"Únicamente el graduando es responsable de las ideas expuestas en el presente trabajo". (Lineamientos constitucionales, legales e institucionales que rigen la propiedad intelectual).

El presente trabajo de grado lo dedico primeramente a Dios por brindarme la fortaleza intelectual, espiritual y física para su respectivo desarrollo dando continuidad a este proceso académico, mis padres y hermanos como eje fundamental en mi vida y quienes me brindaron todo el apoyo durante este proceso a pesar de las distintas adversidades que en el transcurrir se presentaron, a la planta de docentes del programa de ingeniería sanitaria quienes impulsaron el proceso para formarme como un profesional integro, aquella persona que ya no está pero que fue el pilar fundamental en mi vida y por quien deseo culminar con éxito mi carrera profesional. ¡Gracias a cada uno de ustedes…!

Agradecimientos

En primer lugar agradezco por el proceso de formación académica a la universidad de Boyacá especialmente al área de ingeniería sanitaria excelentes docentes, de igual forma a mi director de tesis de grado el Ingeniero sanitario y ambiental David Felipe Bermúdez y codirector la Ingeniera sanitaria y magister ambiental Catherin Dayani Caro Avendaño y la directora del programa de ingeniería sanitaria Yadi Johaira Ramos Parra por su aporte técnico profesional para el desarrollo de la investigación, asimismo se le agradece a la empresa de servicios públicos ServiBelen por su aporte informativo.

Contenido

Pág
Introducción
1. Diagnostico hidráulico la línea de aducción para las condiciones actuales y futuras de
demanda del acueducto del municipio de Belén – Boyacá
1.1. Aspectos generales y compilación de la información acerca del área objeto de
estudio
1.2 Localización
1.3 Límites del municipio
1.4 Aspectos socioeconómicos
1.5 Aspectos Hidrológicos
1.6 Fuentes Abastecedoras Casco Urbano
1.7 Clima
1.8 Precipitación
1.9 Temperatura
1.10 Recopilación de información primaria27
1.11 Servicios públicos
1.12 Estado actual captación28
1.13 Estado actual línea de aducción
1.14 Diagnóstico y evaluación general del sistema en condiciones actuales31
2. Modelar condiciones actuales y futuras para la optimización de la línea de aducción, según
reglamentación técnica
2.1 Proyección poblacional por suscriptores
2.2. Determinación de caudales
2.5. Propuesta como alternativa de optimización de la red de aducción según el material
que compone el tramo del sistema51
2.6 Modelación hidráulica red de aducción del acueducto de Belén – Boyacá
Conclusiones
Recomendaciones
Referencias

EVALUACIÓN Y OPTIMIZACIÓN LÍNEA ADUCCIÓN ACUEDUCTO BELÉN	8	
Anexos	7	8

Lista de Tablas

	Pág.
Tabla 1. Estación pluviografica para la determinación de tormentas	27
Tabla 2. Tabla resumen de variables de análisis red principal de aducción acueducto	
municipio Belén – Boyacá	34
Tabla 3. Datos históricos de suscriptores en el acueducto de Belén – Boyacá	37
Tabla 4 Cálculo de la proyección poblacional	38
Tabla 5. Proyección poblacional según el Departamento Administrativo Nacional de	
Estadísticas (DANE)	40
Tabla 6 Dotación neta máxima por habitante según la altura sobre el nivel del mar de	la zona
objeto de estudio	43
Tabla 7. Cálculos para la Determinación de la dotación neta máxima por el método de	,
suscriptores	44
Tabla 8. Datos generales del área como zona objeto de estudio	47
Tabla 9.Cálculo de consumo uso comercial	47
Tabla 10. Cálculo de consumo uso industrial	47
Tabla 11. Cálculo de consumo uso escolar	48
Tabla 12. Cálculo de consumo uso institucional	48
Tabla 13. Cálculo de consumo no domestico total	48
Tabla 14. Datos para el cálculo de proyección de caudal domestico	49
Tabla 15. Proyección de caudales a 25 años	49
Tabla 16. La presente tabla hace referencia a las alternativas planteadas para la selecci	ión de
material como propuesta de optimización en la aducción	51
Tabla 17.Criterios de alternativas de evaluación de acuerdo a las alternativas planteada	as,
matriz de decisión	51
Tabla 18. Tabla representativa de los valores de ponderación por parte del evaluador p	oara la
selección de la alternativa pertinente de acuerdo al material como propuesta de optimi	zación
en la línea de aducción	53
Tabla 19. Tabla representativa de la evaluación de la alternativa 1 (PVC)	53
Tabla 20. Tabla representativa de la evaluación de la alternativa 2 (PEAD)	54

Tabla 21. Tabla resumen red de nudos de la red de aducción donde se establecen los valores	
de altura y presión según los datos extraídos por el software de modelación	2
Tabla 22. Tabla resumen red de líneas de la red de aducción donde se establecen los valores	
de caudal, velocidad, longitud, diámetro según los datos extraídos por el software de	
modelación ϵ	7

Lista de Figuras

P	Pág.
Figura 1. Localización general del municipio	. 22
Figura 2 Límites del municipio de Belén – Boyacá	. 23
Figura 3 Establecimientos según actividad	. 24
Figura 4 Red hidrográfica municipio de Belén – Boyacá	. 25
Figura 5.Detalle I bocatoma de fondo	. 30
Figura 6. Grafica de proyección población	. 42
Figura 7. Curva de caudales proyectados	. 50
Figura 8 Verificación de la simulación del modelo	. 56
Figura 9. Trasado de la tuberia desde la captacion – desarenadoor y llegada a la PTAP	. 57
Figura 10. Determinación de cotas en los puntos específicos del sistema de aducción	. 57
Figura 11. Alineación del trazado de la red de aducción	. 58
Figura 12. Análisis de la demanda en el sistema de aducción	. 59
Figura 13. Análisis de presión en los nodos del sistema de aducción	60
Figura 14. Análisis de velocidad en las líneas de la red de aducción	61
Figura 15. Diámetro de la tubería como propuesta de optimización de la red de aducción	. 73
Figura 16. Demanda base necesaria para el funcionamiento de la red de aducción y demás	
estructuras del sistema de acueducto	. 73

Lista de Anexos

	Pág.
Anexo A. Anteproyecto	79
Anexo B. Certificado datos de consumo (Adjunto en CD ROM)	101

Glosario

Bocatoma: estructura hidráulica que capta el agua desde una fuente superficial y la conduce al sistema de tratamiento.

Captación: conjunto de estructuras necesarias para obtener el agua de una fuente de abastecimiento.

Conducto: estructura hidráulica destinada al transporte de agua.

Desarenador: estructura destinada a la retención de las arenas y los sólidos que están en suspensión en el agua, mediante un proceso de sedimentación mecánica.

Dotación: cantidad de agua asignada a una población o a un habitante para su consumo en cierto tiempo, expresada en términos de litro por habitante día o dimensiones equivalentes, las estructuras, los terrenos o las excavaciones.

Demanda: corresponde a la cantidad o volumen de agua usado por los sectores económicos y la población.

Línea de aducción: componente del acueducto, al conducto que transporta el agua de la bocatoma, desde la cámara de derivación, hasta el desarenador. Puede ser un canal abierto o un canal cerrado (tubería).

Optimización: proceso de diseño y/o mejoramiento para lograr la mejor armonía y compatibilidad entre los componentes de un sistema de acueducto, aprovechando todos los recursos disponibles.

Sedimentación: proceso por el cual los sólidos suspendidos en el agua se decantan por gravedad.

Topografía: técnica que consiste en describir y representar en un plano la superficie o el relieve de un entorno.

Resumen

Evaluación y optimización de la línea de aducción del acueducto del municipio de Belén – Boyacá:

Actualmente gran parte de las regiones que conforman el territorio colombiano específicamente en el departamento de Boyacá – municipio de Belén, se cuenta con sistemas de acueducto que permiten el suministro de agua potable a sus habitantes bajo principios establecidos en la normatividad técnica. Debido al aumento poblacional, demandas de consumo por parte de los usuarios y cumplimiento del periodo de diseño de cada uno de los componentes del sistema entre otros factores, se presentan falencias en el sistema que no permiten satisfacer las necesidades de cada uno de los suscriptores que hacen parte de la cobertura del sistema para el desarrollo de sus necesidades básicas.

En este sentido, en el acueducto del municipio de Belén – Boyacá se realizó un diagnóstico y la evaluación bajo un modelo hidráulico del componente de la línea de aducción donde se plantea optimizar esta parte del sistema de acueducto para mejorar su respectiva fase de pretratamiento del recurso hídrico y de esta brindar continuidad a los respectivos procesos que conforman el sistema de acueducto.

En consecuencia, este documento tuvo como objetivo realizar una propuesta de optimización de la línea de aducción bajo la evaluación de un modelo hidráulico para el acueducto del municipio de Belén – Boyacá. En síntesis, desde la innovación científica, social y tecnológica para el desarrollo sostenible, se implementó la investigación bajo un enfoque metodológico descriptivo donde se hace la respectiva representación de la información recopilada de manera cualitativa y cuantitativa con herramientas que permiten que permiten presentar detalladamente la información necesaria para determinar con mayor efectividad la propuesta de optimización.

A manera de resultado de esta investigación se logra establecer una propuesta de optimización bajo la modelación hidráulica que permite mejorar este componente del sistema y brindar una mayor eficiencia en la continuidad del proceso.

Palabras claves: Optimización, modelación, acueducto, eficiencia, aducción, componente, sistema, agua, diagnostico, evaluación.

Abstract

Evaluation and optimization of the adduction line of the aqueduct of the municipality of Belén – Boyacá:

Currently, a large part of the regions that make up the Colombian territory, specifically in the department of Boyacá - municipality of Belén, have aqueduct systems that allow the supply of drinking water to its inhabitants under principles established in technical regulations. Due to the population increase, consumption demands by users and compliance with the design period of each of the components of the system among other factors, there are flaws in the system that do not allow the needs of each of the subscribers to be satisfied.

They are part of the system's coverage for the development of their basic needs. In this sense, in the aqueduct of the municipality of Belén - Boyacá, a diagnosis and evaluation were carried out under a hydraulic model of the component of the adduction line where it is proposed to optimize this part of the aqueduct system to improve its respective pretreatment phase of the resource. water and from this provide continuity to the respective processes that make up the aqueduct system.

Consequently, this document aimed to make a proposal to optimize the adduction line under the evaluation of a hydraulic model for the aqueduct of the municipality of Belén – Boyacá. In summary, from scientific, social and technological innovation for sustainable development, the research was implemented under a descriptive methodological approach where the respective representation of the information collected in a qualitative and quantitative manner is made with tools that allow the information to be presented in detail. necessary to determine the optimization proposal more effectively.

As a result of this research, an optimization proposal was established under hydraulic modeling that allows improving this component of the system and providing greater efficiency in the continuity of the process.

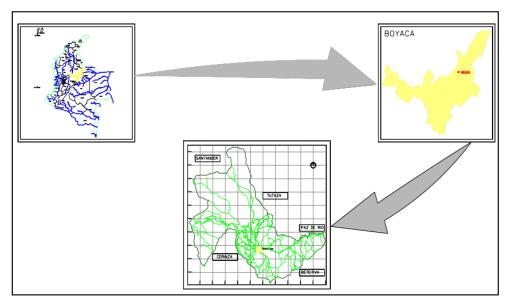
Keywords: Optimization, modeling, aqueduct, efficiency, adduction, component, system, water, diagnosis, evaluation.

Introducción

Las líneas de aducción del acueducto son los conductos destinados a transportar por gravedad o por bombeo las aguas crudas desde los sitios de captación hasta las plantas de tratamiento, prestando excepcionalmente servicio de suministro de agua cruda a lo largo de su longitud (RAS,2010; Cualla, 2003). En un primer contexto la gestión adecuada de los recursos hídricos se ha convertido en un tema de vital importancia en las agendas que se desarrollan en su ámbito global como motor de desarrollo económico, comunitario, social entre otros aspectos, estos recursos permanecen bajo presión que está en constante crecimiento debido al estrés hídrico, el cambio climático a nivel mundial, la dinámica del constante crecimiento poblacional y la sustancial brecha económica y operativa de los servicios públicos. Según la Organización mundial de la salud (OMS), dos mil millones de personas carecen de acceso a servicios de agua potable gestionados de manera adecuada (Roldan, 2016); por tal motivo, en los objetivos de desarrollo sostenible, la organización de las naciones unidas (ONU) reitera constantemente la necesidad de lograr el acceso universal y equitativo al agua potable segura y asequible para cada uno de los habitantes pertenecientes a su territorio, como se indica en el objetivo seis agua limpia y saneamiento. (De aquí a 2030, lograr el acceso universal y equitativo al agua potable a un precio asequible para todos), este objetivo debe centrarse en las comunidades más pobres y vulnerables (ONU, 2015). Es de vital importancia conocer los componentes del sistema de acueducto independientemente de su origen para responder a la necesidad del respectivo pretratamiento que se le realiza al recurso hídrico de esta forma brindar continuidad al tratamiento bajo parámetros establecidos por la normatividad nacional y de esta manera hacer el recurso hídrico apto para el consumo humano. Un sistema de acueducto implica los siguientes componentes: (1) fuentes de abastecimiento, (2) bocatoma, (3) aducción, (4) desarenador, (5) conducción, (6) tanques, (7) redes de distribución, en mención de la conformidad de un acueducto se hace notable que existen limitaciones técnicas en cada uno de sus componentes. La predilección por los sistemas de tratamiento convencionales son una opción para resolver estas problemáticas, sin embargo, el abandono de los sistemas debido a la falta de apoyo por parte de la administración municipal y entes territoriales agravan este problema (Rojas, 2002). En un contexto puntual al tema objeto de investigación es determinante mencionar que el recurso hídrico que abastece al acueducto del municipio de Belén – Boyacá antes de ingresar a

su pretratamiento está expuesto a problemas de contaminación principalmente por actividades agropecuarias, por lo tanto los componentes del sistema de acueducto deben tener un alto grado de eficiencia para poder remover determinadas partículas y brindar continuidad al proceso de tratamiento para garantizar el consumo de agua a sus habitantes. En mención de lo anteriormente descrito, el presente proyecto investigativo tiene como fin realizar un diagnóstico y la evaluación bajo un modelo hidráulico para establecer una propuesta de optimización en el componente de la línea de aducción de acuerdo a la literatura y a lo establecido en la resolución 0330 de 2017 por la cual se deroga el RAS 2000 (reglamento técnico del sector de agua potable y saneamiento básico). Para lograr lo propuesto, se implementa un enfoque metodológico descriptivo representando la información recopilada de manera cualitativa como cuantitativa con el objeto de dar cumplimiento con los objetivos específicos establecidos en este documento. Finalmente, el proyecto evidencia el funcionamiento del componente de la línea de aducción, identificando sus características hidráulicas óptimas para transportar el caudal requerido por el sistema. El tramo evaluado comprende desde la bocatoma hasta el desarenador y continuamente la llegada de tubería hasta la llegada a la PTAP.

1. Diagnostico hidráulico la línea de aducción para las condiciones actuales y futuras de demanda del acueducto del municipio de Belén – Boyacá


1.1. Aspectos generales y compilación de la información acerca del área objeto de estudio

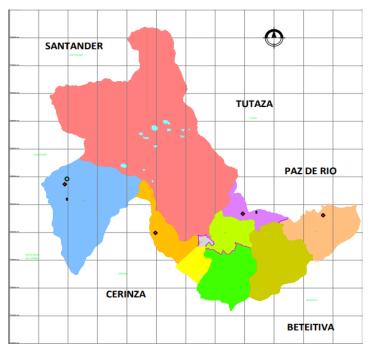
La dirección general de agua potable y saneamiento básico del ministerio de desarrollo económico entrega al país esta primera actualización de los títulos, cada uno es un manual de prácticas de buena ingeniería que recoge el interés general del sector por lograr un acercamiento a las condiciones reales del país, estableciendo los criterios y recomendaciones para el buen funcionamiento de los sistemas de agua potable. El titulo B – Sistemas de acueductos fija los criterios básicos que deben reunir los diferentes procesos involucrados en la conceptualización, el diseño, la construcción, la supervisión técnica, la puesta en marcha, la operación y el mantenimiento de los sistemas de acueducto garantizando su seguridad, durabilidad, funcionalidad, calidad, eficiencia, sostenibilidad y redundancia dentro de un nivel de complejidad determinado.

1.2 Localización

El municipio de Belén se encuentra ubicado en la cordillera oriental al norte del departamento de Boyacá, dentro del rectángulo formado por las coordenadas (con origen Bogotá, Gauss central) X: 1'115.243 – 1'142.300 Y: 1'147.993 – 1'173.478. (Ver figura 1).

Figura 1Localización general del municipio

Fuente: Esquema de Ordenamiento Territorial 2002.


Territorialmente el departamento de Boyacá se encuentra agrupado por (12) provincias, Belén se ubica dentro de la provincia de tundama. Posee altitudes que van desde los 2.600 hasta los 4.000 metros sobre el nivel del mar, su altura barométrica se considera en 2.600 metros sobre el nivel del mar en la parte urbana. (Esquema de ordenamiento territorial, 2002, p. 12)

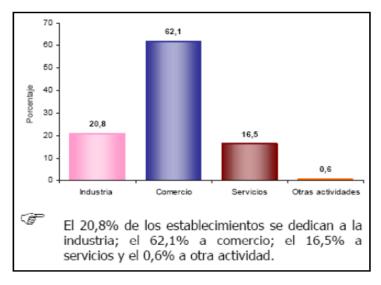
1.3 Límites del municipio

Conforme a las características dadas por la vegetación y los recursos naturales existentes se establece un área aproximada de 284.6 Km2. la cual se delimita transitoriamente de acuerdo a lo siguiente en sentido norte- sur, limitando por el Norte y Nor-occidente con el Departamento de Santander (Municipios de Coromoro y El Encino), al Nor-oriente con Tutazá, al oriente con Paz del Río, al Sur con Beteitiva y al Suroccidente con Cerinza (ver figura 2).

Figura 2

Límites del municipio de Belén – Boyacá.

Fuente: Esquema de Ordenamiento Territorial 2002.

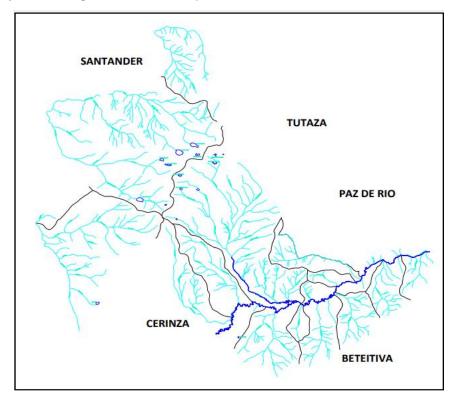

Los límites municipales, fueron creados por las normas legales reglamentarias, donde se definen las áreas oficiales, según información suministrada por el Instituto Geográfico Agustín Codazzi, de los municipios que están definidos mediante actas de deslinde. (Esquema de ordenamiento territorial, 2002, p. 13).

1.4 Aspectos socioeconómicos

Las actividades económicas del municipio se clasifican de acuerdo a los sectores y sistemas de producción, que aparecen a continuación, información recopilada del Boletín – Censo general 2005 (ver figura 3).

Figura 3

Establecimientos según actividad



Fuente: Boletín Censo 2005.

1.5 Aspectos Hidrológicos

Se describe la Red Hidrográfica de las principales cuencas presentes en el municipio de Belén, así como algunos caudales de referencia tomados sobre los cauces de las más importantes corrientes de agua tipos ríos y quebradas importantes de acueductos. Las aguas que drenan el Municipio de Belén vierten en la Cuenca del Río Magdalena. La divisoria de aguas que conforma la Serranía de los Colorados separa igualmente las cuencas de los Ríos Chicamocha y Suárez, la primera drena el sector N-NW del municipio (a través del Río Guacha) y la segunda, el sector S-SE, por medio del Río Minas; estos dos ríos constituyen las dos subcuencas presentes en el municipio, que a su vez se dividen en 19 microcuencas (Esquema de ordenamiento territorial, 2002, p. 14). (ver figura 4).

Figura 4 *Red hidrográfica municipio de Belén – Boyacá*

Fuente: Esquema de Ordenamiento Territorial 2002.

1.6 Fuentes Abastecedoras Casco Urbano

Belén posee dos fuentes de abastecimiento de agua potable para el casco urbano, una proviene de las quebradas cuchilla larga y hoya de porras conocida también como la concordia quienes confluyen en el sitio denominado puente de niñas donde se ubica la captación 1 que desembocan finalmente en el río Minas que atraviesa el municipio, drena la zona norte del municipio con un área de influencia de 55,879 Km2. La segunda fuente abastecedora corresponde al Río Salguera el cual es una corriente de segundo orden, ubicado a la margen izquierda sobre la vía que conduce a Susacón, cuyo caudal es de 2.34 m3/seg medido en época de lluvia, en la cual desembocan corrientes permanentes de primer orden (Esquema de ordenamiento territorial, 2002, p. 15).

1.7 Clima

Considerando que el rasgo del municipio de Belén lo conforma una hoya fisiográfica, cuya vertiente drena hacia la llanura aluvial del río Minas y Salguera, las características climáticas se describen así:

- O Del páramo al Noroccidente, siguiendo la dorsal montañosa del ecosistema, se tiene la fracción final del frente cálido proveniente del valle del Magdalena que asciende hasta estos sectores a través del cañón del río Fonce, teniéndose en este sector un régimen de lluvias típico de bosque montano húmedo a subhúmedo.
- O Del Páramo al Nor-oriente, la situación climática cambia a condiciones bosque montano subhúmedo es decir el dominio de las demás veredas del municipio. Considerando que no existen estaciones climáticas en el dominio de Belén se tiene que recurrir a realizar los análisis con base en información cercana. La más compatible con el clima de Belén es la estación Tutazá, y un poco más lejana se encuentran las estaciones del Encino, Santa Rosa y Duitama (Esquema de ordenamiento territorial, 2002, p. 16).

1.8 Precipitación

Para efectos del presente estudio se seleccionó la estación pluviográfica Surbatá - Bonza, considerada la más completa y cercana a la zona del proyecto, teniendo en cuenta que en el municipio no se encuentra ninguna estación pluviográfica que permita el análisis de las tormentas. Esta estación es operada por el Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM, localizada en el municipio de Duitama, aproximadamente a una elevación de 2485 msnm., y cuenta con registros gráficos de lluvias desde el año 1944.

En el siguiente cuadro, se relacionan las características de la estación, tales como localización elevación, código, municipio al que pertenece. (Esquema de ordenamiento territorial, 2002, p. 17). (ver tabla 1)

Tabla 1 *Estación pluviográfica para la determinación de tormentas.*

Código Ti	Nomb po Estac	Cuc	enca	Departamento	Municipio	Coordenadas Latitud Longitud	Elevación	Fecha Instalación
2403512 A	M Surbata-l	Bonza Su	rba	Boyacá	Duitama	5° 49' N 73° 04' W	2485	15/03/1994

Fuente: Estación Pluviográfica Surbatá - Bonza (1944-2019).

1.9 Temperatura

Las condiciones climáticas del municipio de Belén son frías, con temperaturas entre 6°C y 13°C, lo cual se deduce del comportamiento de la región en ausencia de estaciones climáticas apropiadas en el área de influencia del municipio.

El piso térmico frío comprendido entre los 2.600 y 3.000 m.s.n.m. registra en promedio 13°C, los cuales son más típicos de la zona plana y su variación hacia abajo en grados, se presenta a medida que se asciende por la ladera es decir la variación isoterma se registra en toda la extensión territorial diferente a la zona de paramos. En los días de tiempo seco es posible ascender a los 14°C mientras que en la noche se desciende hasta 7°C. Una de las características climáticas de Belén es la de registrar durante las épocas secas de diciembre y Julio fuertes heladas, las cuales afectan con mayor intensidad la zona plana del valle de los ríos Minas y Salgueras. (Esquema de ordenamiento territorial, 2002, p. 19).

1.10 Recopilación de información primaria

Para la realización del estudio de topografía se tiene en cuenta como antecedente la información existente en el Municipio para efectos de la ejecución objetiva del mismo. La cual consiste en:

- Esquema de ordenamiento territorial municipio de Belén Boyacá.
 Hidrogeología y Geotecnia Ltda. 2002
 - o Levantamiento topográfico de la quebrada guirre. 2008
- Diseño plan maestro de acueducto y alcantarillado del municipio de Belén –
 Boyacá.

o Unidad de servicios públicos SERVIBELEN.

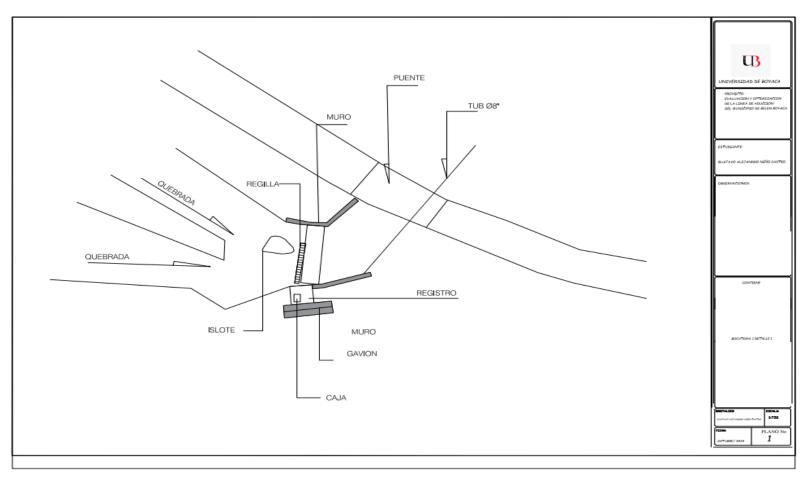
1.11 Servicios públicos

La Unidad de Servicios Públicos del municipio de Belén, denominada SERVIBELEN es la Entidad encargada de la prestación de los servicios de acueducto, alcantarillado y aseo del Municipio. Esta unidad está adscrita a la Alcaldía Municipal y a la asociación de usuarios del municipio por lo cual las actividades administrativas, contables de tesorería y comerciales dependen en conformidad de ambas partes. Esta unidad de Servicios públicos cuenta con un patrimonio proveniente de:

- o Donaciones y aportes.
- o Transferencias del Municipio con destino a los servicios.
- o Activos que componen el sistema de acueducto, alcantarillado y aseo.
- o Ingresos provenientes de la prestación de servicios.
- Ingresos recaudados por el pago de la tarifa de conexión, valor de la acometida y medidor.
- O Los recursos del crédito obtenidos por la ampliación y mejoramiento de la prestación de los servicios.
 - O Subsidios que se le otorguen conforme a la constitución y la ley.

1.12 Estado actual captación

la captación denominada puente de niñas es una bocatoma de fondo construida en concreto, cuenta con una rejilla metálica longitudinal, de 4m de largo * 0.4m de ancho con barras de 1/2" separadas entre sí 0.06m y direccionadas en el sentido de flujo de la corriente. El diámetro de la tubería de la rejilla a la caja de válvulas corresponde a 12", controlan el caudal con dos válvulas de 8" cada una, sale un diámetro de 8" hasta el desarenador y posteriormente una tubería en 6" hasta la entrada a la PTAP con una longitud total de 178.8 m. El caudal captado es conducido a una caja de concreto de 2.5m de largo * 2.20m de ancho y una altura de 2.20m. no cuenta con orificio de control de caudal, por lo que el caudal captado es superior al caudal concesionado por Corpoboyacá.


Longitud: 4.20m

Ancho: 0.45m

La bocatoma se encuentra en buenas condiciones y se le hace un mantenimiento el primer día de cada mes por parte de la empresa de servicios públicos SERVIBELEN.

La Corporación Autónoma de Boyacá CORPOBOYACA otorgo al municipio de Belén, concesión de aguas para el abastecimiento del sistema para un caudal de 14.54 litros por segundo (ver figura 5).

Figura 5Detalle I bocatoma de fondo

Fuente: Autor

1.13 Estado actual línea de aducción

La línea de aducción está compuesta desde la captación denominada puente de niñas hasta la llegada a la PTAP, la aducción se efectúa a través de tubería de PVC de 8" y 6" en una distancia de 178.8 metros.

La línea de aducción visualmente no presenta deficiencia en su proceso, pero de acuerdo a la topografía del terreno y la actividad agrícola que se desarrolla en esta área se puede presentar alteraciones en el material que la compone, por otra parte de acuerdo a la normatividad vigente está por cumplir su periodo de diseño por tanto se realiza la verificación de varios factores que intervienen en el funcionamiento adecuado de este proceso; Se analizan variables como factores relacionados con la velocidad del flujo, diámetro tubería, pérdidas en el curso del flujo, pendiente que tiene el sistema y finalmente el esfuerzo cortante. De esta manera se da continuidad al siguiente capítulo en donde se verifica las variables de análisis anteriormente mencionadas bajo unos datos de entrada y se hace la respectiva comparación con la normatividad vigente.

1.14 Diagnóstico y evaluación general del sistema en condiciones actuales

Para analizar el sistema se parte de los siguientes datos, que son extraídos de fuente de información por parte de la empresa de servicios públicos SERVIBELEN

1.14. 1. Datos específicos para el análisis de variables

Caudal (Q) = 14.54 l/s = 0,01451 m3/s

Longitud (L) = 178.8 m

Cota salida Bocatoma = 2820.00 m. s. n. m

Cota llegada desarenador = 2815.00 m. s. n. m

Diámetro tubería (D) = 0,1524 m = 6"

O Calculo para determinar la pendiente de aducción, de acuerdo a la siguiente operación

$$S = \frac{\text{Cota inicial} - \text{Cota final}}{\text{L}}$$

$$S = \frac{2820.0 \text{ m} - 2815.0 \text{ m}}{178.8 \text{ m}} * 100$$

$$S = 0.027 \frac{\text{m}}{\text{m}} = 2.7$$

De acuerdo a lo establecido en el RAS título B.4.4.13 con respecto a la pendiente, se deriva que con el objeto de sacar el aire que se acumula en los puntos altos de la línea de aducción, es necesario la implementación de ventosas ubicadas en las misma, con el fin de facilitar el arrastre de los sedimentos hacia los puntos bajos. la pendiente mínima recomendada para el caso que el aire circule en el mismo sentido del flujo del agua debe ser mínimo de 0,04%, lo cual cumple con lo calculado anteriormente.

 Calculo para la verificación de la perdida de carga mediante la ecuación de Hazen – Williams, haciendo uso del diámetro de la aducción y del coeficiente de rugosidad del material (PVC).

$$J = \sqrt[0.54]{\frac{Q}{0,2785 * C * D^2,63}}$$

$$J = \sqrt[0.54]{\frac{0.01451 \,\text{m}3/\text{s}}{0.2785 * 150 * 0.1524^2,63}} = 0.036 \,\text{m. c. } a = 3.6\%$$

Nota: de acuerdo a la información obtenida anteriormente se determina la velocidad a partir de la ecuación de Hazen – Williams.

$$Q = 0.2785 * C * D^{2.63} * J^{0.54}$$

$$V * A = 0.2785 * C * D^{2.63} * J^{0.54}$$

$$V = \frac{0.2785 * C * D^{2,63} * J^{0,54}}{\Delta}$$

$$V = \frac{0.2785 * C * D^{2.63} * J^{0.54}}{\frac{\pi * D^2}{4}}$$

$$V = \frac{0,2785 * 150.00 * (0,1524)^{2,63} * (0,036)^{0,54}}{\frac{\pi * (0,1524)^2}{4}} = 2.7 \text{ m/s}$$

Principalmente se puede afirmar que el agua que fluye a través de la tubería de la línea de aducción puede trasportar materiales sólidos en suspensión, en el numeral B.6.4.3.4 del RAS expresa que la velocidad mínima está determinada por una función del esfuerzo cortante mínimo que permita el arrastre de las partículas sedimentables que no hayan sido retenidas con anterioridad. Además, el RAS en el numeral B.6.4.4.8 recomienda que el diámetro mínimo permitido debe ser de 3", la aducción en el acueducto cumple con esta recomendación.

Cálculo del esfuerzo cortante

$$\tau = \gamma * \frac{D}{4} * s$$

$$\tau = 9810 * \frac{0.1524}{4} * 0.027$$

$$\tau = 10.1 \text{ N/m2}$$

El esfuerzo cortante permite el arrastre de los sedimentos, esto hace que las capas del fluido se muevan con una rapidez menor cerca de las paredes del tubo en comparación a las que están próximas al centro debido a la fricción, en el caso en particular permitiendo el arrastre del sedimento dentro de la tubería.

Tabla 2Tabla resumen de variables de análisis red principal de aducción acueducto municipio Belén

– Boyacá

Red principal aducción - acueducto del municipio de Belén - Boyacá								
Bocatoma - Entrada Desarenador								
Factor Valor Unidad								
QMD	0.01451	m3/s						
C	150	PVC						
S	2.7	%						
D	0.1524	m						
Longitud Tramo	178.8	m						
Profundidad Hidráulica (h)	0.60	m						
Velocidad	2.7	m/s						
Cota Terreno Inicial	2820.00	m.s.n.m						
Cota Terreno Final	2815.00	m.s.n.m						

Fuente: Autor

2. Modelar condiciones actuales y futuras para la optimización de la línea de aducción, según reglamentación técnica

2.1 Proyección poblacional por suscriptores

Para el presente proyecto se realizó la proyección poblacional por el método o cálculo de suscriptores conectados al sistema de acueducto. Para llevar a cabo el cálculo del número de suscriptores proyectados para ser abastecidos por el nuevo esquema de distribución de agua potable en su período de diseño, se deben tener en cuenta los siguientes puntos:

- La persona prestadora del servicio debe mantener actualizado el catastro de suscriptores del servicio.
- Comportamiento histórico del crecimiento de los suscriptores de la empresa de acueducto en la zona del municipio o la parte de este objeto del estudio, de acuerdo con la información de la persona prestadora del servicio o de otros sistemas privados o comunales cercanos a la zona objeto del diseño.
- El crecimiento de los suscriptores de otros servicios públicos tales como energía y telefonía fija.
- La meta de crecimiento de suscriptores del sistema de agua, de la empresa de servicios públicos, teniendo en cuenta sus proyecciones de inversión.
 - Métodos matemáticos, tales como los aritméticos, geométricos y exponenciales.
 - Métodos de aproximaciones sucesivas a las proyecciones de suscriptores.

2.1.1 Métodos de proyección de población

El reglamento técnico del sector de agua potable y saneamiento básico establece que para la proyección de usuarios se deben utilizar: métodos matemáticos, tales como los aritméticos y geométricos, métodos de aproximaciones sucesivas a las proyecciones de suscriptores y métodos heurísticos de ensayo y error. Para el presente proyecto se describen y usan los métodos matemáticos, ya que se cuenta con la información necesaria para su aplicación.

2.1.2. Método aritmético

Supone un crecimiento vegetativo balanceado por la mortalidad y la emigración. La ecuación para calcular la población proyectada es la siguiente:

$$Pf = Puc + \frac{Puc - Pci}{Tuc - Tci} * (Tf - Tuc)$$

donde:

Pf= Población correspondiente al año para el que se quiere realizar la proyección (habitantes).

Puc= Población correspondiente a la proyección del DANE (habitantes).

Pci= Población correspondiente al censo inicial con información (habitantes).

Tuc= Año correspondiente al último año proyectado por el DANE.

Tci= Año correspondiente al censo inicial con información.

Tf = Año al cual se quiere proyectar la información.

2.1.3 El método geométrico

Es útil en poblaciones que muestren una importante actividad económica, que genera un apreciable desarrollo y que poseen importantes áreas de expansión las cuales pueden ser dotadas de servicios públicos sin mayores dificultades.

$$Pf = Puc (1+r)^{Tf-Tuc}$$

$$r = \left(\frac{Puc}{Pci}\right)^{\left(\frac{1}{Tuc-Tci}\right)} - 1$$

Donde:

Pf: población proyectada.

Puc: población de último censo.

Pci: población del censo inicial.

Tuc: año del último censo.

Tci: año del censo inicial.

Tf: año de la proyección.

r: tasa de crecimiento anual

2.1.4. El método exponencial

Requiere conocer por lo menos tres censos para poder determinar el promedio de la tasa de crecimiento de la población, en donde el último censo corresponde a la proyección del DANE, se recomienda su aplicación a poblaciones que muestren apreciable desarrollo y posean abundantes áreas de expansión, la ecuación empleada por este método es la siguiente:

$$P_f = P_{ci} * e^{Kx(Tf - Tci)}$$

Donde

 K = La tasa de crecimiento de la población la cual se calcula como el promedio de las tasas calculadas para cada par de censos, así:

$$K = \frac{\ln P_{cp} - \ln P_{ca}}{T_{cp} - T_{ca}}$$

cp = Población del censo posterior (proyección del DANE).

Pca = Población del censo anterior (habitantes).

 $Tcp = A\tilde{n}o$ correspondiente al censo posterior.

 $Tca = A\tilde{n}o$ correspondiente al censo anterior.

Ln = Logaritmo natural o neperiano

A continuación, se investiga y recopila información acerca del registro histórico mediante datos obtenidos por el método de suscriptores el cual dé acuerdo al boletín censo general 2005 el 80.8 % de los hogares en Belén tiene 3.1 personas. Se obtienen datos históricos del número de suscriptores desde el año 2018 hasta el año 2023 los cuales son determinantes para el cálculo de la población. (ver tabla 3).

Tabla 3Datos históricos de suscriptores en el acueducto de Belén – Boyacá

Suscriptores	Censo	Población
1626	2018	5041
1650	2019	5115

1690	2020	5239
1760	2021	5456
1880	2022	5828
1989	2023	6166

El cálculo de la proyección poblacional (hab) y la tasa de crecimiento se realiza partiendo de los métodos aritmético, geométrico y exponencial. Así, se selecciona el modelo que se ajusta al comportamiento histórico poblacional por parte del Departamento Administrativo Nacional de Estadísticas (DANE), el cual se proyectará en un periodo de 25 años partiendo de lo establecido en la Resolución 330 de 2017 (ver tabla 4, 5).

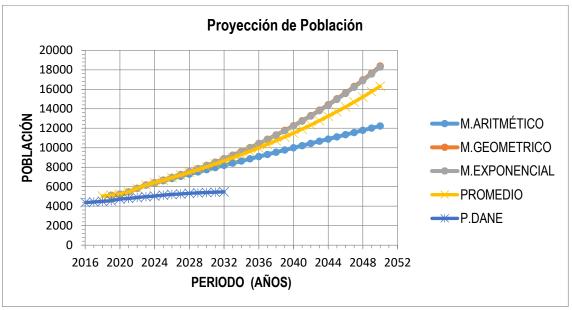
2.1.5 Periodo de diseño

Siguiendo lo estipulado en la Resolución 0330 de 2017, articulo 40, el periodo de diseño para sistemas de acueducto para agua potable es de 25 años.

Tabla 4Cálculo de la proyección poblacional

Datos	Datos Iniciales		Observaciones			
Periodo de diseño	25	Años	Observaciones			
Censo		Población				
2018		5041	1			
2019		5115	Para la valoración de las proyecciones de población se emplean			
2020		5239	métodos recomendados dentro de la norma técnica RAS 2000			
2021		5456	Título B.			
2022		5828				
2023		6166				
Año		Aritmético	Geométrico Exponencial			encial
	K''	K"PROM	r	r PROM	K	KPROM
2018						
2019	74	225,00	0,0147	0,0413	0,0146	0,0403
2020	124		0,0242		0,0240	

2021	217	0,0414	0,0406	
2022	372	0,0682	0,0660	
2023	338	0,0580	0,0564	
		Población de diseñ	io (hab)	
2018	504	1 504	5041	
2019	511	5 511	5115	
2020	523	9 523	5239	
2021	545	6 545	5456	
2022	582	8 582	28 5828	
2023	6.16	6 6.10	66 6.166	
2024	6.39	1 6.42	21 6.419	
2025	6.61	6 6.68	86 6.683	
2026	6.84	1 6.96	62 6.958	
2027	7.06	7.25	50 7.244	
2028	7.29	1 7.54	49 7.542	
2029	7.51	6 7.86	61 7.852	
2030	7.74	1 8.18	86 8.175	
2031	7.96	6 8.52	24 8.511	
2032	8.19	1 8.87	76 8.861	
2033	8.41	6 9.24	42 9.225	
2034	8.64	1 9.62	24 9.604	
2035	8.86	6 10.0	9.999	
2036	9.09	1 10.4	35 10.410	
2037	9.31	6 10.8	10.838	
2038	9.54	1 11.3	11.284	
2039	9.76	6 11.7	11.748	
2040	9.99	1 12.2	12.231	
2041	10.2	16 12.7	76 12.734	
2042	10.44	41 13.3	13.257	
2043	10.60	56 13.8	13.802	
2044	10.89	91 14.4	26 14.370	
2045	11.1	16 15.0	21 14.960	
2046	11.34	41 15.6	15.576	
2047	11.50	56 16.2	16.216	
2048	11.79	91 16.9	16.883	


Tabla 5Proyección poblacional según el Departamento Administrativo Nacional de Estadísticas (DANE)

Población DANE (hab)				
Año	Población			
1985	2817			
1986	2862			
1987	2887			
1988	2936			
1989	2984			
1990	3026			
1991	3075			
1992	3114			
1993	3168			
1994	3215			
1995	3272			
1996	3343			
1997	3390			
1998	3439			
1999	3476			
2000	3565			
2001	3639			
2002	3719			
2003	3780			
2004	3846			
2005	3903			
2006	3950			
2007	3999			
2008	4046			
2009	4088			

	2010	4121
	2011	4144
	2012	4170
	2013	4220
	2014	4277
	2015	4315
	2016	4375
	2017	4428
	2018	4495
	2019	4562
	2020	4721
	2021	4790
	2022	4888
	2023	4971
	2024	5038
	2025	5130
	2026	5202
	2027	5250
	2028	5314
	2029	5360
	2030	5399
	2031	5435
	2032	5467
	2033	5502
	2034	5538
	2035	5569
nte: boletín o	censo 2005	

Fuente: boletín censo 2005

Figura 6 *Grafica de proyección población*

De acuerdo a la información obtenida en la figura 6, se puede establecer que el método de proyección poblacional Aritmético es el que mejor se ajuste respecto a la tendencia poblacional por parte del DANE, para el proyecto investigativo se selecciona el método Aritmético para llevar acabo el respectivo proceso de cálculo de demanda.

2.1.6 Población futura

En base a la información obtenida en las tablas 4 y 5, de acuerdo al título B del RAS se realiza el cálculo de la proyección de población con los datos históricos de número de suscriptores a partir del año 2018 hasta el año 2023 para determinar la tasa de crecimiento en esta población por el método de suscriptores, es decir, se toma el método de proyección poblacional (Aritmético) debido a que según la (figura 6) se ajusta en un mejor comportamiento con respecto a la proyección poblacional establecida por el DANE. Se establece que la población para el año 2023 que abastece el acueducto cuenta con 1989 suscriptores dando un total de 6166 habitantes, para el periodo horizonte de diseño el cual corresponde al año 2048 se obtiene un total de 3083 suscriptores al sistema de acueducto por tanto se proyecta abastecer a

11.791 habitantes pertenecientes al municipio de Belén - Boyacá. El método poblacional aritmético supone que la población tiene un comportamiento lineal y, por ende, la razón de cambio también se supone constante es decir se incrementa en la misma cantidad cada unidad de tiempo considerada, por otra parte, este método supone un crecimiento vegetativo por la mortalidad y la emigración.

2.2. Determinación de caudales

2.2.1 Dotación neta

La dotación neta corresponde a la cantidad mínima de agua requerida para satisfacer las necesidades básicas de un suscriptor o de un habitante, sin considerar las pérdidas que ocurran en el sistema de acueducto, dicha dotación es establecida por la resolución 0330 del 2017 en el apartado del artículo 43. La dotación neta debe determinarse haciendo uso de la información histórica de los consumos de agua potable de los suscriptores al sistema de acueducto, información disponible por parte de la persona prestadora del servicio de acueducto o, en su defecto, recopilada en el Sistema Único de Información (SUI). En todos casos, se deberá utilizar un valor de dotación que no supere los valores máximos establecidos en la Tabla 6.

Tabla 6Dotación neta máxima por habitante según la altura sobre el nivel del mar de la zona objeto de estudio

Altura promedio sobre el nivel del mar de la zona	Dotación neta máxima
atendida	(l/hab*día)
>2000 m.s.n.m	120
1000 -2000 m.s.n.m	130
<1000 m.s.n.m	140
<1000 m.s.n.m	140

Fuente: Resolución 0330 de 2017, 0799 de 2021 y Titulo b Ras

Para el caso en particular del proyecto investigativo 'Evaluación y optimización de la línea de aducción del acueducto del municipio de Belén – Boyacá' se determina la dotación neta máxima por el método de suscriptores obteniendo información de datos históricos de

consumo por parte de la unidad prestadora de servicios SERVIBELEN y el Sistema Único de Información (SUI). Información plasmada en la tabla 7.

 Tabla 7

 Cálculos para la Determinación de la dotación neta máxima por el método de suscriptores

Mes	Año	Consumo (m3)	Q (m3/d)	Q L/d	Numero Personas por hogar	N° Suscriptores	Población	Dotación Neta Máxima (l/hab-día)
Enero	2018	19931	664,4	664366,7	3,1	1610	4991	133,1129366
Diciembre	2016	23873	770,1	770096,8	3,1	1626	5040,6	152,7787911
Enero	2010	19931	664,4	664366,7	3,1	1610	4991	133,1129366
Diciembre	2019	19937	643,1	643129,0	3,1	1905	5905,5	108,9034006
Enero	2020	19948	664,9	664933,3	3,1	1667	5167,7	128,67104
Diciembre	2020	19998	645,1	645096,8	3,1	1690	5239	123,1335702
Enero	2021	20105	670,2	670166,7	3,1	1711	5304,1	126,3487994
Diciembre	2021	20184	651,1	651096,8	3,1	1760	5456	119,335919
Enero	2022	21223	707,4	707433,3	3,1	1817	5632,7	125,5940017
Diciembre	2022	25846	833,7	833741,9	3,1	1880	5828	143,0579848
Enero	2022	29725	990,8	990833,3	3,1	1925	5967,5	166,0382628
Agosto	2023	30157	972,8	972806,5	3,1	1989	6165,9	157,7720125
						Dotación	n Promedio	134,8216379

Fuente: autor

Respecto a los datos derivados de la tabla 7, se obtiene una dotación neta máxima de 134,82 L/hab-día, dato que se calcula por el método de suscriptores donde se tiene registro histórico de consumo desde el año 2018 hasta el año 2023, especificando que el número de personas por hogar en el municipio de Belén – Boyacá es de 3.1 según el boletín del DANE 2005.

45

2.2.2 Dotación bruta

La dotación bruta para el diseño de los elementos que conforman un sistema de acueducto, independientemente del nivel de complejidad, se calcula teniendo en cuenta que el porcentaje de pérdidas técnicas máximas en la ecuación engloba el total de perdidas esperadas en todos los componentes del sistema como aducciones, conducciones, plantas de tratamiento y redes de distribución, donde estas pérdidas no deben superar el 25%.

$$D_{bruta} = \frac{D_{neta}}{1 - \%p}$$

Donde:

D bruta: dotación bruta

D neta: dotación neta

% p: perdidas máximas admisibles en el sistema

$$D_{bruta} = \frac{134.8216379 \frac{L}{hab*dia}}{1-0.25} = 179.7 \frac{L}{hab*dia}$$

La dotación bruta calculada a partir del dato obtenido de la dotación neta máxima y asumiendo un porcentaje de pérdidas técnicas del 25% es de 179.7 L/hab/día; dato que permite el desarrollo de cálculo de caudales.

2.2.3 Caudal medio diario

El caudal medio diario (Qmd) corresponde al promedio de los consumos diarios de caudal en el periodo de un año, proyectado al horizonte de diseño.

$$Qmd = \frac{N^{\circ} suscriptores * D_{bruta}}{86400 s}$$

$$Qmd = \frac{12381hab * 179.7 \frac{l}{hab * d}}{86400 seg} = 25.7 L/s$$

2.2.4 Caudal máximo diario

El caudal máximo diario (QMD), corresponde al consumo máximo registrado durante un tiempo de 24 horas a lo largo de un periodo de un año. Se calcula multiplicando el caudal medio diario por el coeficiente de consumo máximo diario, k1 que se obtiene de la relación entre el mayor consumo diario y el consumo medio diario, utilizando los datos registrados en un período mínimo de un año.

$$QMD = Qmd * k_1$$

$$QMD = 25.7 \frac{L}{seg} * 1.3 = 33.41 \frac{L}{seg}$$

2.2.5. Caudal máximo horario

El caudal máximo horario (QMH), corresponde al consumo máximo registrado durante una hora en un período de un año sin tener en cuenta el caudal de incendio. Se calcula como el caudal máximo diario multiplicado por el coeficiente de consumo máximo horario k2.

$$QMH = QMD * k_2$$

$$QMH = 33.41 \frac{l}{s} * 1.6 = 53.4 \frac{l}{s}$$

2.3 Memoria de cálculo proyección de caudales no domésticos

En un primer contexto para la determinación de caudales se realiza la proyección de caudales no domésticos (ver tabla 8-9-10-11-12-13) donde se encuentra especificado el consumo de uso comercial, industrial, escolar, institucional. Con el objetivo de obtener un valor de consumo total no doméstico en 1/s y continuamente realizar la proyección de caudal domestico al horizonte de diseño para verificar la capacidad de demanda en el sistema de aducción.

Tabla 8Datos generales del área como zona objeto de estudio

Municipio de Belén - Boyacá		Coordenadas		
Ubicación	Cordillera oriental	Norte	Oeste	
Zona	Provincia - Tundama			
Área zona de estudio (Ha)	10	05°37'53"	73°37'23"	
Población servida (Ha)	6.474			

Tabla 9Cálculo de consumo uso comercial

Tino do Instaloción	Dotación Neta	Cantidad	Caudal
Tipo de Instalación		Cantidad	(L/día)
Oficinas	20 L/m²/día	130	2600
Locales comerciales	6 L/m²/día	200	1200
Mercados	100 L/local/día	15	1500
Total			5300

Fuente: autor

Tabla 10Cálculo de consumo uso industrial

Tipo de Instalación	Dotación Neta	N° personas	Caudal
Tipo de Histalación	Dotacion Neta	IN PERSONAS	(L/día)
Industrias materiales	100 L/persona/día	80	8000
Lecherías	0.8 L/persona/día	200	160
Fábricas de bebidas (por habitante)	0.2 L/persona/día		
Otras industrias	30 L/persona/día	70	3500
	Consumo total Qui		11660

Fuente: autor

Tabla 11Cálculo de consumo uso escolar

Tipo De Instalación	Dotación Neta	N° alumnos	Caudal
Tipo De Histalación	Dotacion Neta		(L/día)
Educación elemental	20 L/alumno/jornada	900	18000
Educación media y superior	25 L/alumno/jornada	600	15000
	Consumo total Que		33000

Tabla 12Cálculo de consumo uso institucional

Tino do Instalación	Dotación Neta	N° persona	Caudal
Tipo de Instalación	Dotacion Neta	IN PERSONA	(L/día)
Hospitales, clínicas y centros de salud	800 L/cama/día	40	32000
Cárceles	150 L/interno/día		0
Orfanatos y asilos	300 L/huésped/día	50	15000
	Consumo total Que		47000

Fuente: autor

Tabla 13Cálculo de consumo no domestico total

Resumen consumo no domestico	Cantidad	Caudal Unitario (l/día)	Caudal Total (l/día)
uso comercial	345	15,36231884	5300
uso industrial	350	33,31428571	11660
uso escolar	1500	22	33000
uso institucional	90	522,2222222	47000
	Consumo total Qtotal (l/día)		96960
	Consumo Total Qtotal (l/seg)		1,122222222

Fuente: autor

De acuerdo a la memoria de cálculo de proyección de caudal no doméstico (uso comercial, uso industrial, uso escolar, uso institucional), se obtiene un consumo total de 1,12

l/seg de consumo no doméstico, el cual este valor será sumado al caudal medio diario (Qmd) al valor proyectado en el año 2048 con el objetivo de verificar si el sistema en el año de horizonte cuenta con la capacidad de demanda para suministrar a sus para sus habitantes.

2.4 Memoria de cálculo de proyección de caudales domésticos

Tabla 14Datos para el cálculo de proyección de caudal domestico

		Fuente	Observaciones	
Población servida (Hab)	6.474	Informe	El método seleccionado para la proyección de	
		Proyección de	población es el Método Aritmético . La	
Población proyectada (Hab)	12.381	Población 2023 -	población flotante corresponde al 5% con base	
		2048	en el diseño del plan maestro de acueducto y	
Factor de mayoregión	K1 K2	Res. 0330 de	alcantarillado 2009, las pérdidas técnicas en el	
Factor de mayoración	1,3 1,6	2017; Res 0799 sistema se asumen al 25% de acuerdo		
Dotación neta (L/Hab/día)	134.8	de 2021	establecido resolución 0330 de 2017.	

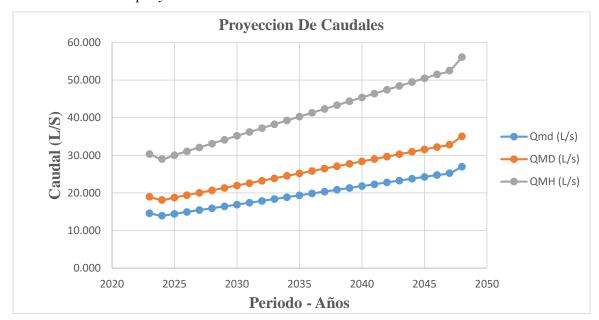

Fuente: autor

Tabla 15Proyección de caudales a 25 años

Año	Población Proyectada (hab)	Población Flotante (hab)	Población Total (hab)	Pérdidas técnicas (%)	Dotación Neta Máxima (L/hab/día)	Dotación Bruta (L/hab/día)	Caudal Proyectado (L/día)	Caudal Medio Diario qmd (L/s)	Caudal Máximo Diario QMD (L/s)	Caudal Máximo Horario QMD (L/s)
2023	6166	308,3	6474,3	0,25	134,82	179,76	1163820	14,592	18,970	30,352
2024	6391	319,55	6710,55	0.25	134.82	179,76	1206288	13,962	18,150	29,040
2025	6616	330,8	6946,8	0.25	134.82	179,76	1248757	14,453	18,789	30,063
2026	6841	342,05	7183,05	0.25	134.82	179,76	1291225	14,945	19,428	31,085
2027	7066	353,3	7419,3	0.25	134.82	179,76	1333693	15,436	20,067	32,107
2028	7291	364,55	7655,55	0.25	134.82	179,76	1376162	15,928	20,706	33,130
2029	7516	375,8	7891,8	0.25	134.82	179,76	1418630	16,419	21,345	34,152
2030	7741	387,05	8128,05	0.25	134.82	179,76	1461098	16,911	21,984	35,175
2031	7966	398,3	8364,3	0.25	134.82	179,76	1503567	17,402	22,623	36,197
2032	8191	409,55	8600,55	0.25	134.82	179,76	1546035	17,894	23,262	37,219
2033	8416	420,8	8836,8	0.25	134.82	179,76	1588503	18,385	23,901	38,242
2034	8641	432,05	9073,05	0.25	134.82	179,76	1630971	18,877	24,540	39,264
2035	8866	443,3	9309,3	0.25	134.82	179,76	1673440	19,369	25,179	40,287
2036	9091	454,55	9545,55	0.25	134.82	179,76	1715908	19,860	25,818	41,309
2037	9316	465,8	9781,8	0.25	134.82	179,76	1758376	20,352	26,457	42,331

2048	11791	589,55	12380,55	0.25	134.82	179,76	2225528	26,978	35,072	56,115
2047	11566	578,3	12144,3	0.25	134.82	179,76	2183059	25,267	32,847	52,555
2046	11341	567,05	11908,05	0.25	134.82	179,76	2140591	24,775	32,208	51,533
2045	11116	555,8	11671,8	0.25	134.82	179,76	2098123	24,284	31,569	50,510
2044	10891	544,55	11435,55	0.25	134.82	179,76	2055654	23,792	30,930	49,488
2043	10666	533,3	11199,3	0.25	134.82	179,76	2013186	23,301	30,291	48,466
2042	10441	522,05	10963,05	0.25	134.82	179,76	1970718	22,809	29,652	47,443
2041	10216	510,8	10726,8	0.25	134.82	179,76	1928250	22,318	29,013	46,421
2040	9991	499,55	10490,55	0.25	134.82	179,76	1885781	21,826	28,374	45,398
2039	9766	488,3	10254,3	0.25	134.82	179,76	1843313	21,335	27,735	44,376
2038	9541	477,05	10018,05	0.25	134.82	179,76	1800845	20,843	27,096	43,354

Figura 7Curva de caudales proyectados

Fuente: autor

De acuerdo a la gráfica de caudales proyectados (figura 7) y la (tabla 15), actualmente se tiene una población de 6474 habitantes para un consumo de 14.592 l/s, para el año de proyección 2048 se obtendría una población 12380 habitantes con una demanda de consumo de 26,978 (L/s) dato calculado por medio del caudal medio diario (Qmd). Este dato de consumo será analizado mediante el software de modelación con el objetivo de verificar si el sistema está en capacidad de cumplir con la demanda y dar continuidad al tratamiento del recurso hídrico y suministro para sus habitantes.

2.5. Propuesta como alternativa de optimización de la red de aducción según el material que compone el tramo del sistema

2.5.1. Selección de alternativa de optimización

Se trabajó la investigación en campo con el componente de aducción del sistema existente y la respectiva topografía, así como también con los parámetros de población, demanda, velocidad y presión establecidas en el reglamento técnico Resolución 0330 de 2017.

2.5.2. Alternativas planteadas

A continuación, se presentan las alternativas planteadas para evaluación y selección de material para la red de aducción como propuesta de optimización (ver tabla 16-17-18-19-20).

Tabla 16

La presente tabla hace referencia a las alternativas planteadas para la selección de material como propuesta de optimización en la aducción

Alternativa 1 (PVC)	Alternativa 2 (PEAD)
Esta consiste en evaluar el proyecto	Esta consiste en evaluar el proyecto
instalando tubería de policloruro de vinilo,	instalando tubería de Polietileno de Alta
llamado comercialmente PVC.	Densidad, llamado comercialmente PEAD.

Fuente: autor

Tabla 17Criterios de alternativas de evaluación de acuerdo a las alternativas planteadas, matriz de decisión

Aspectos	Factores	Alternativa 1 (PVC)	Alternativa 2 (PEAD)
		Ks = 0,0015 mm (Darcy	Ks = 0.007(Darcy &
Consideraciones	rugosidad	Weisbach) Menores	Weisbach) Mayores pérdidas
técnicas		perdidas de presión.	por fricción.
	caudal transportado	Mayor caudal transportado	Menor caudal transportado

	rango de presiones características de trabajo	Tuberías con presión de trabajo hasta 315 psi	Tuberías con presión de trabajo hasta 230 psi
Facilidad en	características comerciales de la tubería	Almacenamiento: cubierto Longitud: 6m por tubo	Almacenamiento: intemperie Longitud: Tuberías en tramos de 6m
instalación	complejidad en la construcción y equipamiento	sistema de unión campana espigo	Sistema de unión, termofusión o electro fusión
	ventajas en operación	Riesgo alto en roturas	Riesgo medio en roturas
Requerimientos de operación y	resistencia a sismos	al ser un material menos flexible al polietileno de alta densidad presenta una menor resistencia a amenazas sísmicas	por su flexibilidad es un material altamente resistente a amenazas sísmicas
mantenimiento	tecnología ampliamente	Tecnología ampliamente	Tecnología ampliamente
	probada	probada	probada
Fuente: autor	disponibilidad de repuestos y centro de servicio	disponibilidad alta	Disponibilidad intermedia

2.5.3. Resultados de aplicación de metodología y análisis de alternativas

Para la selección de la alternativa de optimización de acuerdo a los resultados obtenidos de la matriz de decisión, los cuales dependen en gran medida de la ponderación efectuada en cada criterio de evaluación bajo las condiciones específicas de cada alternativa, se establece que el proceso que obtenga la mayor calificación será el seleccionado.

Tabla 18

Tabla representativa de los valores de ponderación por parte del evaluador para la selección de la alternativa pertinente de acuerdo al material como propuesta de optimización en la línea de aducción

N°	Valor de ponderación				
IN	Factor Evaluado	Ponderación Evaluador			
1	Características técnicas	20%			
2	Facilidad De Instalación	20%			
3	Requerimientos de Operación y Mantenimiento	20%			
4	Costos de Inversión	40%			
	Total	100%			

Tabla 19Tabla representativa de la evaluación de la alternativa 1 (PVC)

EVALUACION ALTERNATIVA 1 (PVC)						
1	2	3	4	5		
		0 = No aplica				
% Factor Evaluado	1 = suficiente	(3*1) depende de la descripción y	4 *			
	Factor Evaluado	3 = adecuado	factores descritos anteriormente	1		
	4 = bueno	factores deseritos anteriormente	1			
		5 = muy bueno				
20	Características técnicas	4	0.8	16		
20	Facilidad de Instalación	5	1.0	20		
20	Requerimientos de Operación y Mantenimiento	4	0.8	16		
40	Costos de inversión	4	0.8	32		
	Total	17	3.4	84		

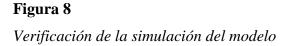
Fuente: autor

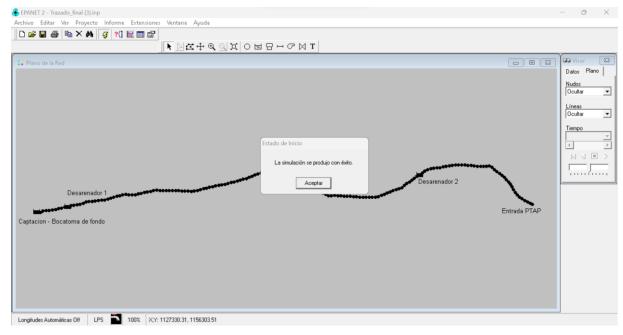
Tabla 20Tabla representativa de la evaluación de la alternativa 2 (PEAD)

EVALUACION ALTERNATIVA 2 (PEAD)						
1	2	3	4	5		
		0 = No aplica				
		1 = suficiente	(3*1) depende de la			
%	Factor Evaluado	3 = adecuado	descripción y factores	4 * 1		
		4 = bueno	descritos anteriormente			
		5 = muy bueno				
20	Características técnicas	3	0.6	12		
20	Facilidad de Instalación	3	0.6	12		
20	Requerimientos de Operación y Mantenimiento	3	0.6	12		
40	Costos de inversión	3	0.6	24		
	Total	12	2.4	60		

De acuerdo a los resultados obtenidos anteriormente se selecciona como propuesta de alternativa de optimización para la línea de aducción el material Policloruro de vinilo comercialmente denominado PVC, sus características técnicas, facilidad de instalación, operación y mantenimiento, costos entre otros aspectos hacen una mayor eficiencia para el transporte del recurso hídrico y así brindar continuidad en el sistema de tratamiento del acueducto del municipio de Belén – Boyacá.

2.5.4. Aspectos evaluados para la selección del material

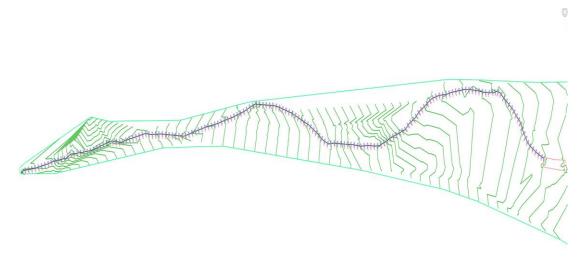

Según la resolución 0330 de 2017 el artículo 56 establece una velocidad mínima de trabajo de 0.50 m/s, la velocidad máxima de trabajo depende del tipo, grado y rde de la tubería a emplear. En el componente de la línea de aducción se establece una tubería RDE 21 la cual hace referencia a la presión máxima de resistencia por parte de la tubería, en referencia a lo anterior un primer tramo se encuentra en tubería de 8´´con un diámetro interno de 198.21mm, continuamente un segundo tramo en tubería de 6´´ diámetro interno 152.22mm, de


acuerdo al catálogo de PVC esta referencia resiste una presión de trabajo máxima de 350 psi por lo cual es aceptable para dar continuidad y eficiencia en el sistema.

- En atención a lo establecido en el artículo 63, se determina un diámetro interno real mínimo en la red de distribución el cual corresponde a 75 mm, por lo cual la tubería existente tiene un diámetro mínimo de 152.22 mm cumpliendo con lo estipulado en el artículo en mención.
- Mayores caudales: coeficiente de fricción Ks = 0.0015 (Darcy & Weisbach)
 Se obtiene que este tipo de tubería está en capacidad de transportar mayores caudales,
 análisis que se verificara en el software de modelación.
- o Facilidad y rapidez de instalación: peso liviano, tuberías en tramos de 6m, conexión campana, espigo con diámetros comerciales hasta de 20".
- o Mayor economía, transporte de mayor volumen de agua y el valor del material es menor en comparación a otros.
- Energía disponible: la energía debido a la posición de los puntos de conexión es baja por lo cual se requiere un diámetro y coeficiente de fricción adecuado para transportar el caudal de diseño con las menores perdidas posibles.
- o El material de PVC se encuentran diámetros comerciales y diámetros internos mayores debido a la relación diámetro espesor.

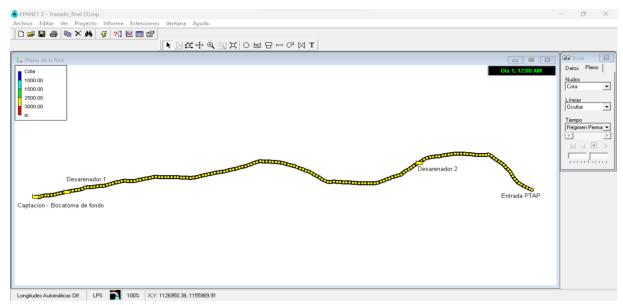
2.6 Modelación hidráulica red de aducción del acueducto de Belén - Boyacá

Mediante el programa Epanet se cargan todos los datos de nodos y líneas y se agrega manualmente el embalse que hace referencia a la captación y demás elementos requeridos para la simulación, como se observa a continuación.



Fuente: software EPANET 2.0

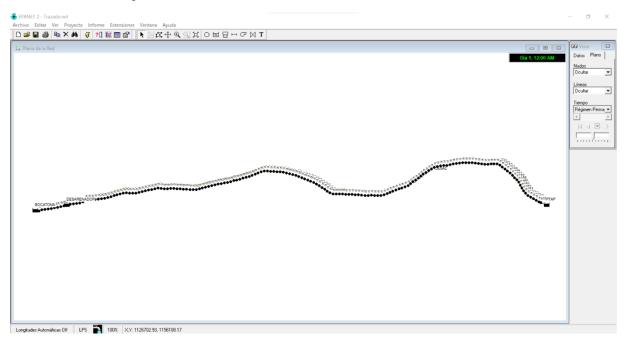
En un primer contexto se inicia con la exportación de datos en el software identificando el estado de inicio del modelo con cada uno de los componentes que hacen parte del sistema de aducción, se realiza la respectiva simulación del modelo la cual se produjo con éxito; continuamente se da inicio a realizar la respectiva simulación de las variables de análisis velocidad, caudal, presión entre otros factores.


Figura 9Trasado de la tuberia desde la captación – desarenadoor y llegada a la PTAP

Fuente: software EPANET 2.0

La figura representa el trazado de la red de aducción con sus respectivas curvas de nivel las cuales permiten la identificación de la topografía y la variación del terreno especificando la forma topográfica en la que se encuentra el sistema de la línea de aducción.

Figura 10Determinación de cotas en los puntos específicos del sistema de aducción



Fuente: software EPANET 2.0

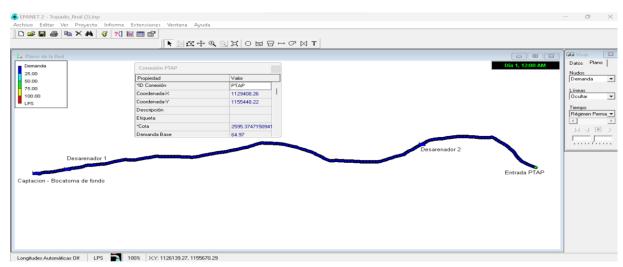
De acuerdo al software de modelación hidráulica se tiene un inicio donde el modelo lo asume como un embalse, pero para el proyecto investigativo es la captación que se encuentra a una altura de los 2820.00 m.s.n.m, posteriormente se encuentra un intervalo de tubería que va desde el nodo 1 hasta el nodo 10 en diámetro de 8´´ llegando al desarenador 1 con un altura de 2816.34 m.s.n.m, continuamente del nodo 10 hasta el nodo 127 que hace referencia al desarenador 2 con una altura representativa de los 2625.97 m.s.n.s tubería en diámetro de 8´´y reducción de la tubería a 6´´. A la salida del desarenador 2 se cuenta con tubería de 8´´ hasta la entrada a la PTAP que corresponde al nodo 169 y se encuentra a una altura de 2595.37 m.s.n.m. De esta manera se puede evidenciar en el modelo que la altura del sistema se encuentra entre los 2500 m.s.n.m y los 3000 m.s.n.m donde de acuerdo al código de colores de la leyenda predomina el color amarillo como identificación de la altura en puntos específicos del sistema.

Figura 11

Alineación del trazado de la red de aducción

Fuente: software EPANET 2.0

En el nodo 1 se cuenta con una cota de salida de 2820.00 m.s.n.m llegando al desarenador en el nodo 10 con una cota de 2816.35 m.s.n.m y el nodo 169 con una cota de llegada a la PTAP de 2595.37 m.s.n.m.

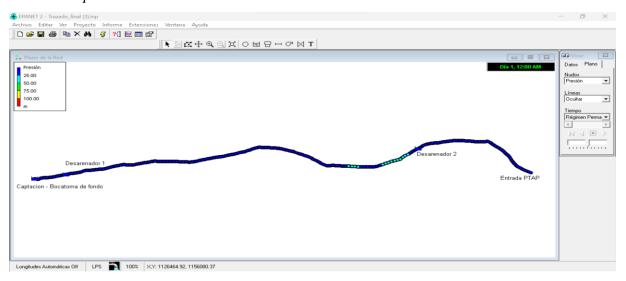

A partir de la topografía en Auto Cad se exportan las curvas de nivel para hacer el trazado en Civil 3D, continuamente se generaron los nodos y el alineamiento con un total de 169 nodos en intervalos de cada 20 m. una vez realizado el trazado se exportaron los datos en un formato DXF para poder exportar la tubería a EpaCad y generar un archivo en formato. INP para realizar la respectiva importación en el software EPANET.

En el programa EPANET se trabajó con valores en unidades del sistema internacional, para el cálculo de las perdidas por fricción y perdidas menores se hace uso de la ecuación de Darcy – Weisbach.

De acuerdo a la topografía y el recorrido de la línea de aducción se define que el material de la tubería es PVC (Polietileno de alta densidad) RED 21, de esta forma determinamos coeficiente de rugosidad y definir los diámetros de tubería existentes.

Para el caso en particular del proyecto investigativo de acuerdo a la ecuación de Darcy -Weisbach se obtiene un valor del coeficiente de rugosidad de 0,0015 el cual hace referencia a la perdida de carga dentro de una tubería. Particularmente al estimar un RED 21 según el manual técnico de PVC se obtiene que para el diámetro de tubería de 8″ se especifica un diámetro interno de 198.21mm y para el diámetro de 6″ existe un diámetro interno de 152.22mm, específicamente el diámetro interno hace referencia a la medida de la apertura interna de la tubería donde se aloja el fluido que está en capacidad de transportar la tubería.

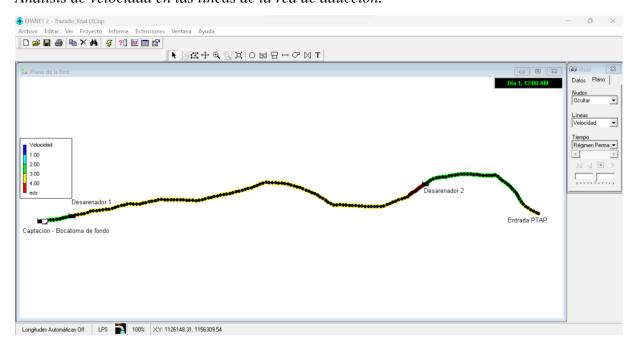
Figura 12 *Análisis de la demanda en el sistema de aducción*



Fuente: software EPANET 2.0

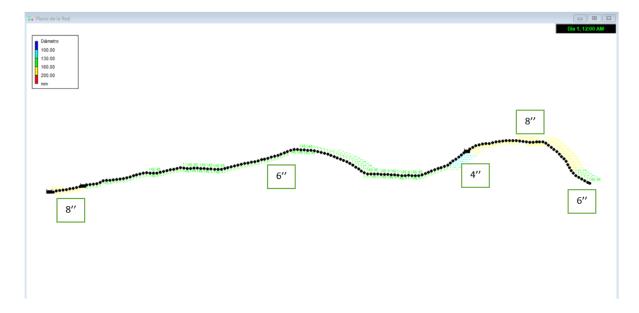
Actualmente (Año 2023) el sistema abastece a una población de 6474 habitantes con un caudal (Qmd) de 14.592 l/s, para el año de proyección (2048) el sistema abastecerá a una población de 12380 habitantes con un caudal (Qmd) proyectado de 26.978 l/s.

De acuerdo a los datos obtenidos por medio del software el caudal máximo que puede transportar la línea de aducción es de 64.97 l/s, de esta manera se puede comprobar la variable correspondiente al diámetro, observando los caudales máximos que puede transportar la tubería y comparándolos con el caudal de diseño requerido para el proyecto. Para el año de proyección se tiene una demanda base de consumo de 26.978 l/s para abastecer a una población aproximada de 12.381 hab, de acuerdo al dato obtenido de demanda base por medio de la modelación se obtiene un caudal de 64.971 l/s lo cual hace referencia a una tubería que transporta un caudal significativo provocando excesos en las estructuras de llegada como desarenador y llegada a la PTAP lo cual dificulta su disposición final de este recurso ya que no se cuenta con un sistema para que los excesos sean retornados de manera adecuada a la fuente hídrica. De esta manera se hace necesario plantear un nuevo sistema de aducción reduciendo el diámetro de la tubería para transportar el caudal necesario con el objetivo de brindar una mayor eficiencia en la continuidad del proceso de tratamiento del recurso hídrico.


Figura 13Análisis de presión en los nodos del sistema de aducción

Fuente: software EPANET 2.0

De la imagen anterior se puede observar que la presión dinámica de la red tiene valores por encima de los 5 m.c.a para los puntos más altos y críticos de la red, lo cual garantiza el correcto funcionamiento como lo indica la resolución 0330 de 2017. Existen algunos tramos de la tubería con presiones dinámicas menores a los 5 m.c.a debido a la topografía del terreno la tubería se encuentra instalada a una mayor profundidad lo cual genera una pérdida de presión en el sistema. Por otra parte, a la llegada de la PTAP tenemos una presión dinámica de 10.74 m.c.a. lo cual permite dar continuidad al curso del agua para el proceso de tratamiento en el sistema de acueducto.


Figura 14Análisis de velocidad en las líneas de la red de aducción.

Fuente: software EPANET 2.0

Según lo establecido en la resolución 0330 de 2017 se especifica una velocidad mínima de 0.45 m/s y velocidad máxima de 5 m/s. De acuerdo al modelo se obtiene una velocidad que se encuentra en el rango de 2 y 3.75 m/s para una velocidad promedio de 2.74 m/s en el transcurso de la línea de aducción, a la llegada de la PTAP se cuenta con una velocidad de 3,75 m/s. A partir de estos datos se obtiene que esta parte del sistema de acueducto cumple con la velocidad pertinente para el respectivo arrastre de partículas sedimentables y permitir el curso del flujo de agua para dar continuidad al sistema de tratamiento.

Figura 15Diámetro de la tubería en condiciones actuales

Fuente: software EPANET 2.0

La figura 15 es la representación de la tubería de aducción con sus respectivos diámetros donde se puede verificar que es una tubería con una variabilidad de diámetros que transportan una demanda base demasiado alta respecto al caudal que se necesita para suministrar a la comunidad, de esta manera se plantea una reducción de diámetros lo cual implica un nuevo trazado de la línea de aducción.

Tabla 21Tabla resumen red de nudos de la red de aducción donde se establecen los valores de altura y presión según los datos extraídos por el software de modelación en condiciones actuales del sistema

Tabla de red - nudos				
ID nudo	Altura (m)	Presión (m)		
Conexión n6	2818,43	0,21		
Conexión n7	2817,91	0,08		
Conexión n8	2817,39	0,05		
Conexión n9	2816,87	0,11		

Conexión n11	2815,08	0,63
Conexión n12	2813,7	8,1
Conexión n13	2812,41	10,37
Conexión n14	2811,14	12,21
Conexión n15	2809,89	11,97
Conexión n16	2808,63	10
Conexión n17	2807,35	12,08
Conexión n18	2806,07	14,3
Conexión n19	2804,8	15,1
Conexión n20	2803,53	16,52
Conexión n21	2802,26	16,96
Conexión n22	2801	16,37
Conexión n23	2799,74	16,04
Conexión n24	2798,47	15,86
Conexión n25	2797,21	14,62
Conexión n26	2795,95	14,09
Conexión n27	2794,68	13,72
Conexión n28	2793,42	12,51
Conexión n29	2792,18	9,97
Conexión n30	2790,92	9,51
Conexión n31	2789,63	11,71
Conexión n32	2788,38	12,99
Conexión n33	2787,12	12,06
Conexión n34	2785,85	8,78
Conexión n35	2784,58	6,92
Conexión n36	2783,32	5,34
Conexión n37	2782,06	4,04
Conexión n38	2780,79	3,98
Conexión n39	2779,53	3,81
Conexión n40	2778,27	3,86
Conexión n41	2777	4,26
Conexión n42	2775,73	5,35
Conexión n43	2774,46	6,44
Conexión n44	2773,19	6,78
Conexión n45	2771,93	6,69
Conexión n46	2770,66	7,43
Conexión n47	2769,39	8,63

Conexión n48	2768,12	9,83
Conexión n49	2766,85	11,02
Conexión n50	2765,57	12,22
Conexión n51	2764,32	12,81
Conexión n52	2763,05	12,6
Conexión n53	2761,79	12,39
Conexión n54	2760,53	12,19
Conexión n55	2759,26	11,98
Conexión n56	2758	11,4
Conexión n57	2756,73	11,43
Conexión n58	2755,47	10,8
Conexión n59	2754,21	9,95
Conexión n60	2752,94	9,33
Conexión n61	2751,68	8,55
Conexión n62	2750,42	8,8
Conexión n63	2749,15	9,03
Conexión n64	2747,89	9,08
Conexión n65	2746,62	9,05
Conexión n66	2745,36	8,92
Conexión n67	2744,09	8,46
Conexión n68	2742,83	8,2
Conexión n69	2741,56	7,84
Conexión n70	2740,3	6,68
Conexión n71	2739,04	5,03
Conexión n72	2737,78	3,53
Conexión n73	2736,52	5,11
Conexión n74	2735,21	9,59
Conexión n75	2733,9	13,96
Conexión n76	2732,62	15,26
Conexión n77	2731,35	15,9
Conexión n78	2730,08	16,84
Conexión n79	2728,82	17,57
Conexión n80	2727,55	17,93
Conexión n81	2726,29	17,7
Conexión n82	2725,02	17,69
Conexión n83	2723,76	17,33
Conexión n84	2722,49	18,35

Conexión n85	2721,22	18,6
Conexión n86	2719,96	18,74
Conexión n87	2718,69	18,57
Conexión n88	2717,43	18,21
Conexión n89	2716,16	18,08
Conexión n90	2714,91	17,39
Conexión n91	2713,64	16,94
Conexión n92	2712,38	16,71
Conexión n93	2711,11	16,53
Conexión n94	2709,85	16,36
Conexión n95	2708,59	16,34
Conexión n96	2707,33	15,7
Conexión n97	2706,09	16,63
Conexión n98	2704,81	18,35
Conexión n99	2703,54	20,16
Conexión n100	2702,26	21,71
Conexión n101	2700,99	23,02
Conexión n102	2699,72	24,25
Conexión n103	2698,45	25,28
Conexión n104	2697,18	25,67
Conexión n105	2695,92	25,6
Conexión n106	2694,65	25,3
Conexión n107	2693,39	24,91
Conexión n108	2692,13	24,45
Conexión n109	2690,86	23,34
Conexión n110	2689,6	22,63
Conexión n111	2688,34	22,68
Conexión n112	2687,09	22,37
Conexión n113	2685,82	22,69
Conexión n114	2684,45	29,67
Conexión n115	2683,11	35,71
Conexión n116	2681,83	37,91
Conexión n117	2680,55	39,28
Conexión n118	2679,28	40,98
Conexión n119	2678	42,72
Conexión n120	2676,73	44,23
Conexión n121	2675,47	44,14

Conexión n122	2667,23	36,93
Conexión n123	2658,96	29,64
Conexión n124	2650,73	22,49
Conexión n125	2642,46	15,08
Conexión n126	2634,24	7,92
Conexión n128	2625,62	0,9
Conexión n129	2625,27	1,62
Conexión n130	2624,92	1,99
Conexión n131	2624,57	2,14
Conexión n132	2624,21	3,01
Conexión n133	2623,86	3,23
Conexión n134	2623,51	3,81
Conexión n135	2623,16	4,38
Conexión n136	2622,8	4,79
Conexión n137	2622,45	5,55
Conexión n138	2622,1	6,05
Conexión n139	2621,74	6,79
Conexión n140	2621,39	8,22
Conexión n141	2621,04	6,86
Conexión n142	2620,68	4,35
Conexión n143	2620,33	3,64
Conexión n144	2619,98	4,49
Conexión n145	2619,62	5,14
Conexión n146	2619,27	6,68
Conexión n147	2618,92	6,6
Conexión n148	2618,59	8,61
Conexión n149	2618,27	8,26
Conexión n150	2617,93	7,54
Conexión n151	2617,58	5,96
Conexión n152	2617,23	7,15
Conexión n153	2616,88	7,63
Conexión n154	2616,52	7,78
Conexión n155	2616,17	7,61
Conexión n156	2615,82	7,54
Conexión n157	2615,47	7,44
Conexión n158	2615,11	7,58
Conexión n159	2614,76	8,13

Conexión n160	2614,41	9,86
Conexión n161	2614,06	10,31
Conexión n162	2613,7	10,88
Conexión n163	2613,35	11,54
Conexión n164	2612,09	12,27
Conexión n165	2610,82	12,73
Conexión n166	2609,56	12,37
Conexión n167	2608,3	11,61
Conexión n168	2607,03	11,03
Conexión PTAP	2606,12	10,74

Fuente: software EPANET 2.0

La tabla 21 son datos extraídos del proceso de modelación, hace referencia a los nodos que componen el tramo de tubería de la red de aducción con intervalos de 20 m para un total de 169 nodos. Específicamente en los nodos se evalúa la presión y la altura en m.s.n.m

Tabla 22

Tabla resumen red de líneas de la red de aducción donde se establecen los valores de caudal, velocidad, longitud, diámetro según los datos extraídos por el software de modelación en condiciones actuales del sistema

Tabla de Red – Líneas						
ID Línea	Longitud (m)	Diámetro (mm)	Caudal LPS	Velocidad m/s	Factor de Fricción	
Tubería p22	19.97	148.46	64,97	3,75	0,013	
Tubería p23	20.03	148.46	64,97	3,75	0,013	
Tubería p24	20	148.46	64,97	3,75	0,013	
Tubería p25	20.01	148.46	64,97	3,75	0,013	
Tubería p26	20.02	148.46	64,97	3,75	0,013	
Tubería p27	20	148.46	64,97	3,75	0,013	
Tubería p28	19.7	148.46	64,97	3,75	0,013	
Tubería p29	20	148.46	64,97	3,75	0,013	
Tubería p30	20.3	148.46	64,97	3,75	0,013	
Tubería p31	19.89	148.46	64,97	3,75	0,013	

Tubería p32	20	148.46	64,97	3,75	0,013
Tubería p33	20.1	148.46	64,97	3,75	0,013
Tubería p34	20.01	148.46	64,97	3,75	0,013
Tubería p35	20	148.46	64,97	3,75	0,013
Tubería p36	20	148.46	64,97	3,75	0,013
Tubería p37	20.04	148.46	64,97	3,75	0,013
Tubería p38	20.03	148.46	64,97	3,75	0,013
Tubería p39	20	148.46	64,97	3,75	0,013
Tubería p40	20.02	148.46	64,97	3,75	0,013
Tubería p41	20.14	148.46	64,97	3,75	0,013
Tubería p42	20.14	148.46	64,97	3,75	0,013
Tubería p43	20.04	148.46	64,97	3,75	0,013
Tubería p44	20.03	148.46	64,97	3,75	0,013
Tubería p45	20.1	148.46	64,97	3,75	0,013
Tubería p46	20.15	148.46	64,97	3,75	0,013
Tubería p47	20.15	148.46	64,97	3,75	0,013
Tubería p48	20.15	148.46	64,97	3,75	0,013
Tubería p49	20.15	148.46	64,97	3,75	0,013
Tubería p50	19.86	148.46	64,97	3,75	0,013
Tubería p51	20.03	148.46	64,97	3,75	0,013
Tubería p52	20.03	148.46	64,97	3,75	0,013
Tubería p53	20.03	148.46	64,97	3,75	0,013
Tubería p54	20.03	148.46	64,97	3,75	0,013
Tubería p55	20.01	148.46	64,97	3,75	0,013
Tubería p56	20.04	148.46	64,97	3,75	0,013
Tubería p57	20.01	148.46	64,97	3,75	0,013
Tubería p58	20	148.46	64,97	3,75	0,013
Tubería p59	20.01	148.46	64,97	3,75	0,013
Tubería p60	20.01	148.46	64,97	3,75	0,013
Tubería p61	20.04	148.46	64,97	3,75	0,013
Tubería p62	20.05	148.46	64,97	3,75	0,013
Tubería p63	20.04	148.46	64,97	3,75	0,013
Tubería p64	20.04	148.46	64,97	3,75	0,013
Tubería p65	20.02	148.46	64,97	3,75	0,013

Tubería p66	20.02	148.46	64,97	3,75	0,013
Tubería p67	20.02	148.46	64,97	3,75	0,013
Tubería p68	20.02	148.46	64,97	3,75	0,013
Tubería p69	19.96	148.46	64,97	3,75	0,013
Tubería p70	20	148.46	64,97	3,75	0,013
Tubería p71	20	148.46	64,97	3,75	0,013
Tubería p72	19.91	148.46	64,97	3,75	0,013
Tubería p73	20.82	148.46	64,97	3,75	0,013
Tubería p74	20.79	148.46	64,97	3,75	0,013
Tubería p75	20.16	148.46	64,97	3,75	0,013
Tubería p76	20.09	148.46	64,97	3,75	0,013
Tubería p77	20.12	148.46	64,97	3,75	0,013
Tubería p78	20.07	148.46	64,97	3,75	0,013
Tubería p79	20.04	148.46	64,97	3,75	0,013
Tubería p80	20.03	148.46	64,97	3,75	0,013
Tubería p81	20.04	148.46	64,97	3,75	0,013
Tubería p82	20.02	148.46	64,97	3,75	0,013
Tubería p83	20.11	148.46	64,97	3,75	0,013
Tubería p84	20.06	148.46	64,97	3,75	0,013
Tubería p85	20.05	148.46	64,97	3,75	0,013
Tubería p86	20.03	148.46	64,97	3,75	0,013
Tubería p87	20.02	148.46	64,97	3,75	0,013
Tubería p88	20.03	148.46	64,97	3,75	0,013
Tubería p89	19.95	148.46	64,97	3,75	0,013
Tubería p90	20.02	148.46	64,97	3,75	0,013
Tubería p91	20.03	148.46	64,97	3,75	0,013
Tubería p92	20.02	148.46	64,97	3,75	0,013
Tubería p93	20.03	148.46	64,97	3,75	0,013
Tubería p94	19.92	148.46	64,97	3,75	0,013
Tubería p95	20.01	148.46	64,97	3,75	0,013
Tubería p96	19.6	148.46	64,97	3,75	0,013
Tubería p97	20.22	148.46	64,97	3,75	0,013
Tubería p98	20.21	148.46	64,97	3,75	0,013
Tubería p99	20.2	148.46	64,97	3,75	0,013

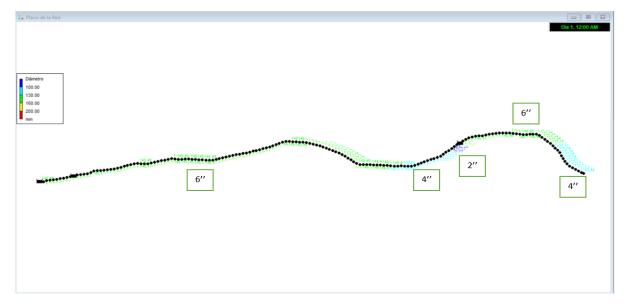
Tubería p100	20.17	148.46	64,97	3,75	0,013
Tubería p101	20.16	148.46	64,97	3,75	0,013
Tubería p102	20.13	148.46	64,97	3,75	0,013
Tubería p103	20.07	148.46	64,97	3,75	0,013
Tubería p104	20.03	148.46	64,97	3,75	0,013
Tubería p105	19.99	148.46	64,97	3,75	0,013
Tubería p106	20.02	148.46	64,97	3,75	0,013
Tubería p107	20.02	148.46	64,97	3,75	0,013
Tubería p108	19.98	148.46	64,97	3,75	0,013
Tubería p109	20.01	148.46	64,97	3,75	0,013
Tubería p110	20.04	148.46	64,97	3,75	0,013
Tubería p111	19.76	148.46	64,97	3,75	0,013
Tubería p112	20.06	148.46	64,97	3,75	0,013
Tubería p113	21.68	148.46	64,97	3,75	0,013
Tubería p114	21.31	148.46	64,97	3,75	0,013
Tubería p115	20.28	148.46	64,97	3,75	0,013
Tubería p116	20.17	148.46	64,97	3,75	0,013
Tubería p117	20.22	148.46	64,97	3,75	0,013
Tubería p118	20.23	148.46	64,97	3,75	0,013
Tubería p119	20.1	148.46	64,97	3,75	0,013
Tubería p120	20.03	148.46	64,97	3,75	0,013
Tubería p121	19.92	100.84	64,97	8,13	0,012
Tubería p122	20.02	100.84	64,97	8,13	0,012
Tubería p123	19.91	100.84	64,97	8,13	0,012
Tubería p124	20.02	100.84	64,97	8,13	0,012
Tubería p125	19.87	100.84	64,97	8,13	0,012
Tubería p126	20	100.84	64,97	8,13	0,012
Tubería p127	20.01	193.23	64,97	2,22	0,014
Tubería p128	20.03	193.23	64,97	2,22	0,014
Tubería p129	19.85	193.23	64,97	2,22	0,014
Tubería p130	20.01	193.23	64,97	2,22	0,014
Tubería p131	20.02	193.23	64,97	2,22	0,014
Tubería p132	19.98	193.23	64,97	2,22	0,014
Tubería p133	20.02	193.23	64,97	2,22	0,014

TD 1 / 104	10.00	102.22	64.07	2.22	0.014
Tubería p134	19.99	193.23	64,97	2,22	0,014
Tubería p135	20	193.23	64,97	2,22	0,014
Tubería p136	20.03	193.23	64,97	2,22	0,014
Tubería p137	20.02	193.23	64,97	2,22	0,014
Tubería p138	20.03	193.23	64,97	2,22	0,014
Tubería p139	20.02	193.23	64,97	2,22	0,014
Tubería p140	20.03	193.23	64,97	2,22	0,014
Tubería p141	20.12	193.23	64,97	2,22	0,014
Tubería p142	19.96	193.23	64,97	2,22	0,014
Tubería p143	20.03	193.23	64,97	2,22	0,014
Tubería p144	20.03	193.23	64,97	2,22	0,014
Tubería p145	20.05	193.23	64,97	2,22	0,014
Tubería p146	19.82	193.23	64,97	2,22	0,014
Tubería p147	19.05	193.23	64,97	2,22	0,014
Tubería p148	18.1	193.23	64,97	2,22	0,014
Tubería p149	19.07	193.23	64,97	2,22	0,014
Tubería p150	19.76	193.23	64,97	2,22	0,014
Tubería p151	20.03	193.23	64,97	2,22	0,014
Tubería p152	20.02	193.23	64,97	2,22	0,014
Tubería p153	20.01	193.23	64,97	2,22	0,014
Tubería p154	20	193.23	64,97	2,22	0,014
Tubería p155	19.91	193.23	64,97	2,22	0,014
Tubería p156	20	193.23	64,97	2,22	0,014
Tubería p157	19.99	193.23	64,97	2,22	0,014
Tubería p158	19.82	193.23	64,97	2,22	0,014
Tubería p159	20.05	193.23	64,97	2,22	0,014
Tubería p160	20	193.23	64,97	2,22	0,014
Tubería p161	20.02	193.23	64,97	2,22	0,014
Tubería p162	19.88	193.23	64,97	2,22	0,014
Tubería p163	20.02	148.46	64,97	3,75	0,013
Tubería p164	20.07	148.46	64,97	3,75	0,013
Tubería p165	20.02	148.46	64,97	3,75	0,013
Tubería p166	19.98	148.46	64,97	3,75	0,013
Tubería p167	20.01	148.46	64,97	3,75	0,013
•					

EVALUACIÓN Y OPTIMIZACIÓN LÍNEA ADUCCIÓN ACUEDUCTO BELÉN

Tubería p168	14.52	148.46	64,97	3,75	0,013
Tubería p169		193.23		2,74	

72

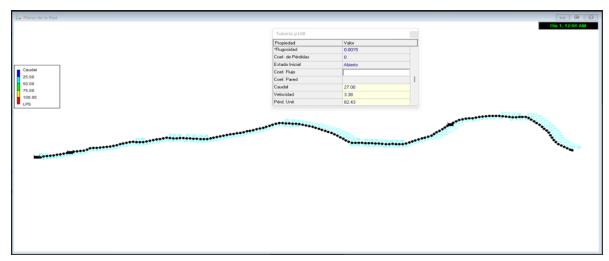

Fuente: software EPANET 2.0

De acuerdo a la tabla 22 son datos extraídos por medio del software de modelación, específicamente hace referencia a los conductos que están conectados a cada uno de los nodos en donde se analizan variables como longitud (m), diámetro (mm), caudal (l/s), velocidad (m/s), y el factor de fricción. De acuerdo a los datos obtenidos se puede corroborar información de funcionamiento actual del sistema de aducción, se obtiene un diámetro mayor en la línea de aducción de 193.23 mm 8" donde el sistema está transportando una demanda base de 64.97 l/s lo cual afecta el proceso de tratamiento de las demás estructuras produciendo un caudal de excesos que no tiene una adecuada disposición final, de esta manera se necesita realizar una reducción en cuanto al diámetro de la tubería para transportar el caudal necesario al año proyectado el cual es un equivalente a 26.978 l/s, la velocidad de flujo de 2,74 m/s la cual permite el arrastre de partículas sedimentables.

2.6.1. Propuesta de optimización línea de aducción municipio Belén – Boyacá

De acuerdo al análisis realizado anteriormente sobre las condiciones de funcionamiento en estado actual del sistema de aducción se plantea como propuesta de optimización el trazado de una nueva red de tubería con reducción del diámetro para transportar el caudal requerido al año de proyección (26.978l/s) y la selección del material de PVC, debido a que la red también presenta perforaciones por parte de la comunidad para realizar sus actividades agrícolas y por otra parte el sistema también ya cumple su periodo de diseño. Se realiza el proceso de modelación obteniendo los siguientes resultados.

Figura 16Diámetro de la tubería como propuesta de optimización de la red de aducción



Fuente: software EPANET 2.0

De acuerdo a la figura 16 se plantea la red con una reducción de diámetro con el objetivo de transportar la demanda base proyectada y brindar mayor eficiencia a las demás estructuras continúas mejorando el proceso tanto de pretratamiento y tratamiento.

Figura 17

Demanda base necesaria para el funcionamiento de la red de aducción y demás estructuras del sistema de acueducto

Fuente: software EPANET 2.0

Al realizar un nuevo trazado de la red de aducción reduciendo los diámetros existentes se puede evidenciar que la red transportaría un caudal de 27 lps lo cual sería suficiente y consecuente con el dato obtenido de demanda base para el año 2048 (26.978 lps), de esta manera la red estaría en mejor funcionamiento, disminuiría el caudal de excesos y se estaría supliendo la necesidad de consumo de los 12.381 habitantes.

Conclusiones

Actualmente la bocatoma capta un mayor caudal del concesionado por la CAR (Corporación autónoma regional de Boyacá), lo cual estará afectando las estructuras que componen el sistema de acueducto, se hace necesario un replanteo de esta estructura para reducir su proceso de captación.

En atención a los resultados de la evaluación de la red de aducción para el sistema de acueducto del municipio de Belén - Boyacá, se determina la selección de la alternativa, la cual consiste en emplear como material Policloruro Vinilo PVC RDE 21 como diámetro máximo 6″ necesario para transportar el caudal requerido.

Bajo la modelación hidráulica se obtiene un análisis que permite brindar continuidad al sistema de acuerdo a cada una de sus variables comparándolas con la resolución 0330 de 2017.

En cuanto al diagnóstico de la red de aducción se determinó que el sistema cumple con lo establecido a los parámetros de velocidad y presión, pero el sistema presenta inconsistencia en lo que respecta a caudal y diámetro de la tubería debido a que se está transportando un mayor caudal al requerido para el suministro de sus habitantes.

Según los datos obtenidos por medio del modelo existen puntos de presión que están por debajo de los 5 m.c.a. de esta manera el sistema no estaría cumpliendo con lo planteado en la normatividad por tanto la entidad pertinente del acueducto deberá hacer un replanteo en estos puntos para verificar la profundidad hidráulica de la tubería y adecuarla para mejorar la eficiencia en el sistema en cuanto a la presión.

De acuerdo a los datos obtenidos de la modelación de la red de distribución se infiere que es necesario realizar un estudio más detallado con respecto a la topografía y validación de la información de los usuarios del municipio de Belén debido a su crecimiento poblacional.

La propuesta de optimización plantea reducción de diámetros en la red de aducción para transportar el caudal correspondiente lo cual generara una reducción de costos y mejoraría la eficiencia del sistema.

Recomendaciones

Para un funcionamiento óptimo se recomienda la constate supervisión a la unidad de aducción con el fin de mantener un sistema eficiente y funcional todo el tiempo.

Debido a que la red en su tramo inicial y aguas arriba estará expuesta a daños por posible arrastre de material y la actividad agropecuaria se hace necesario que la entidad pertinente declare determinada cantidad de terreno como zona de reserva natural para que de esta manera se respalde el cuidado del componente de aducción.

Es necesario implementar las válvulas de ventosas y las válvulas de purga para garantizar un flujo óptimo de agua en la tubería ubicados en los puntos requeridos por el sistema.

Recomendar una intervención integral que incluya procesos de verificación y mantenimiento para reparar algunos tramos de tubería, en el caso en que no fuera posible realizar el cambio de red de aducción en el sistema de acueducto.

Referencias

- Abril, J. y Beltrán, A. (2014). *Análisis de la demanda y la red de distribución de agua en el municipio de Aracataca, Colombia*. (Trabajo de grado, Universidad Católica de Colombia). https://repository.ucatolica.edu.co/server/api/core/bitstreams/9afaccb1-717b-4a29-a5ed-6bb5ec3f890c/content.
- Caicedo, D. y Garcés, J. (2016). *Diagnostico técnico del acueducto urbano del municipio de Quipile Cundinamarca*. (Trabajo de grado, Universidad Católica de Colombia). https://repository.ucatolica.edu.co/server/api/core/bitstreams/9afaccb1-717b-4a29-a5ed-6bb5ec3f890c/content.
- López Cualla, R (2003). Elementos de diseño para acueductos y alcantarillados: Consumo de agua. (2ª Ed.). Escuela Colombiana de Ingeniería.
- Ministerio de Vivienda, Ciudad y Territorio. (2017, 08 de junio) Reglamento técnico del sector de agua potable y saneamiento básico, Título B. Sistemas de acueducto. https://minvivienda.gov.co/sites/default/files/normativa/resolucion-0330-2017.pdf
- Ministerio de Vivienda Ciudad y Territorio. (2017, 08 de junio). *Reglamento técnico del sector de agua potable y saneamiento básico RAS-2017*. [Resolución 0330 de 2017]. https://minvivienda.gov.co/sites/default/files/normativa/resolucion-0330-2017.pdf
- Ministerio de Vivienda, Ciudad y Territorio. (2021, 09 de diciembre). *Por la cual se modifica la Resolución 0330 de 2017*. [Resolución 0799 de 2021]. https://www.acofi.edu.co/wp-content/uploads/2021/12/Resolucion-799-de-2021.pdf