Propuesta de optimización de la red de alcantarillado de la vereda Morca, del municipio de Sogamoso – Boyacá empleando el software SewerCAD

Xiomara Daniela Parra Monroy Xiomara Lucia Alcantar Junco

Universidad de Boyacá
Facultad de Ciencias e Ingeniería
Ingeniería Sanitaria
Tunja
2024

Propuesta de optimización de la red de alcantarillado de la vereda Morca, del municipio de Sogamoso – Boyacá empleando el software SewerCAD

Xiomara Daniela Parra Monroy Xiomara Lucia Alcantar Junco

Trabajo de grado para optar al título de: Ingeniero Sanitario

Director (a):

David Felipe Bermúdez Duarte

Ing. Ambiental y Sanitario

Universidad de Boyacá
Facultad de Ciencias e Ingeniería
Ingeniería Sanitaria
Tunja
2024

	Nota de aceptación:
_	
	Eigene grasidente del Ivas de
	Firma presidente del Jurado
_	
	Firma del Jurado
_	
	Firms del Jurado

"Únicamente el graduando es responsable de las ideas expuestas en el presente trabajo"

(Lineamientos constitucionales, legales e institucionales que rigen la propiedad intelectual).

Este proyecto de grado es un homenaje a nuestros padres para honrar cada uno de sus esfuerzos en la búsqueda de desarrollo profesional y personal. Su apoyo ha sido fundamental para alcanzar a ser personas integras con conocimientos morales e inquebrantables, igualmente está dedicado a nuestros hermanos por la paciencia en todo ese tiempo que hemos vivido, por darnos la mano en momentos cuando lo necesitamos.

Los momentos no nos los quita nadie y la sensación de tener todo cerca siempre fue más que las palabras. De igual manera agradecemos a nuestros familiares y amigos que nos dieron su apoyo de una forma u otra durante todo el recorrido que hemos vivido durante todos estos años.

Agradecimientos

Agradecemos a nuestros profesores de cada materia vista, ya que nos mostraron un amplio mundo de la Ingeniería Sanitaria y sus diferentes matices.

Por último y no menos importante a la comunidad del sector de la vereda de Morca, del municipio de Sogamoso, por brindarnos su disposición y colaboración frente al desarrollo del trabajo de grado.

Contenido

	Pág.
Introducción	18
Diagnóstico del alcantarillado actual de la vereda de Morca del municipio Sogamoso	o 20
Localización	20
División político administrativa	20
Generalidades	21
Climatología	21
Precipitación	22
Hidrografía	25
Hidrología	26
Geología y suelos	33
Topografía	35
Aspectos socioeconómicos	35
Estado actual del servicio del alcantarillado sanitario	36
Catastro de la red de alcantarillado inventario de colectores y pozos	37
Áreas de drenaje	45
Sistema de tratamiento de aguas residuales	47
Proyecciones de poblaciones y demanda	47
Caudales de descarga (cálculo de caudales)	51
Caudal para aguas residuales domesticas	52
Aguas residuales industriales (QI)	52
Caudal de aguas residuales comerciales (QC)	52
Caudal de aguas residuales institucionales (Qin)	53
Caudal medio diario de aguas residuales	53
Factor de mayoración	53
Caudal máximo horario.	54
Caudal de aguas residuales por conexiones erradas.	54
Modelación del sistema de alcantarillado actual	59
Resultados de modelación del catastro actual en diferentes tiempos de retorno	62

	Escenario 1 -Periodo de retorno 2 años	62
F	Escenario 2-Periodo de retorno de 5 años	73
	Escenario 3 periodo de retorno 10 años	85
Pla	nteamiento, análisis y selección de alternativas	98
F	Planteamiento alternativas de alcantarillado	98
	Alternativa 1	99
	Alternativa 2	99
	Alternativa 3	100
	Aspectos técnicos	101
	Área requerida	101
	Materiales y equipos a usar (fácil y no costosa adquisición)	102
	Flexibilidad de ajustes y ampliación	102
	Requerimientos de bombeo	102
	Facilidad y flexibilidad de operación	102
	Facilidad y flexibilidad de mantenimiento	102
	Durabilidad	103
	Aspectos de orden socio-ambientales	103
	Requerimientos de energía	103
	Generación de contaminación	104
	Generación de empleo de trabajadores de localidad	104
	Generación de obstrucciones del espacio público	104
	Contaminación de cursos de agua superficial	104
	Cambios en el paisaje	104
	Contaminación y daños al suelo	104
	Incidencias sobre la flora y fauna	105
	Generación de contaminación	105
	Generación de empleo de trabajadores de localidad	105
	Calidad de vida	105
	Contaminación de cursos de agua superficial	105
	Cambios en el paisaje	106
	Contaminación y daños al suelo	106

Volumen de residuos sólidos generados	106
Aspectos económicos	106
Valor de la tierra a adquirir	107
Costos de construcción	107
Costos de operación y mantenimiento	107
Selección de alternativas	116
Conclusiones	118
Recomendaciones	120
Anexos	124

Lista de tablas

	Pág.
Tabla 1. Información de las estaciones	27
Tabla 2. Valores mensuales de precipitación de la Estación Monguí	30
Tabla 3. Inventario de pozos existentes en el área de influencia	38
Tabla 4. Inventario de conductos existentes en el área de influencia	41
Tabla 5. Método aritmético	48
Tabla 6. Método geométrico	49
Tabla 7. Método exponencial	50
Tabla 8. Caudal por tramos del sistema	56
Tabla 9. Cálculos hidráulicos de la modelación en el escenario 1	72
Tabla 10. Resultado parámetros hidráulicos escenario 2	84
Tabla 11. Resultados de los parámetros hidráulicos escenario 3	96
Tabla 12. Alternativa 1	99
Tabla 13. Alternativa 2	100
Tabla 14. Alternativa 3	100
Tabla 15. Análisis comparativo de materiales	108
Tabla 16. Matriz de evaluación alternativas de alcantarillado	109
Tabla 17. Matriz y ponderación de las alternativas	110

Lista de figuras

	Pág.
Figura 1. Localización general del proyecto	20
Figura 2. División político administrativa de Sogamoso	21
Figura 3. Temperatura de Sogamoso – Boyacá	22
Figura 4. Precipitación de Sogamoso	23
Figura 5. Valores máximos mensuales de precipitación en 24 horas	23
Figura 6. Precipitaciones presentadas durante el año	24
Figura 7. Curvas IDF	25
Figura 8. Hidrografía de Morcá	26
Figura 9. Distribución espacial de las estaciones	27
Figura 10. Precipitaciones en el transcurso del año	29
Figura 11. Geología de la zona de estudio	34
Figura 12. Topografía de la vereda Morca y sector el portillo	35
Figura 13. Catastro de redes de alcantarillado actúa del centro poblado Mor-	ca y Sector el
portillo	38
Figura 14. Estado actual de los Pozos	40
Figura 15. Estado actual del alcantarillado	43
Figura 16. Diámetros de conductos en el área de estudio	44
Figura 17. Áreas de drenaje en el área de estudio	46
Figura 18. Métodos de proyección	51
Figura 19. Topología de Modelo	61
Figura 20. Velocidad escenario 1	63
Figura 21. Capacidad hidráulica escenario 1	65
Figura 22. Caudal transportado escenario 1	67
Figura 23. Numero de froude escenario 1	69
Figura 24. Fuerza Tractiva escenario 1	71
Figura 25. Velocidad escenario 2	75
Figura 26. Capacidad hidráulica escenario 2	77
Figura 27. Caudal transportado	79

OPTIMIZACION RED DE ALCANTARILLADO	VEREDA	$M \cap R \cap \Delta$

Figura 28. Numero de Froude escenario 2	81
Figura 29. Fuerza tractiva escenario 2	83
Figura 30. Velocidad escenario 3	87
Figura 31. Capacidad hidráulica escenario 3	89
Figura 32. Caudal transportado escenario 3	91
Figura 33. Numero de Froude escenario 3	93
Figura 34. Fuerza tractiva escenario 3	95
Figura 35. Proyección de colectores planteados	98

Lista de anexos

	Pág.
Anexo A. Anteproyecto	125
Anexo B. Levantamiento topográfico detallado centro poblado de morca -	el portillo
Sogamoso – Boyacá	145
Anexo C. Catastro de redes de alcantarillado del centro poblado de morca -	el portillo
Sogamoso – Boyacá	146
Anexo D. Planos tiempo de retención 2 años	147
Anexo E. Planos tiempo de retención 5 años	148
Anexo F. Planos tiempo de retención 10 años	149

Glosario

Aguas residuales: se refiere a aguas las cuales han sido utilizadas en actividades humanas y que como resultado han adquirido contaminantes, las cuales las hacen inadecuadas para. (Davis ,2019).

Alcantarillado: es un sistema de infraestructura que comprende a una red de tuberías, pozos de inspección, colectores y estaciones de bombeo, diseñado para la recolección, transporte y tratamiento de aguas residuales y pluviales, con el fin de proteger la salud pública y el medio ambiente. (Tchobanoglous et al., 2003).

Caudal: es el volumen de agua que fluye por una sección determinada de una corriente o conducto por un tiempo determinado. (Chanson, 2004)

Colector: es la tubería principal en un sistema de alcantarillado, el cual, es el encargado de recoger y transportar las aguas residuales desde varios tramos hacia la planta de tratamiento o el punto de vertido. (Menon, 2011)

Conductos: los conductos son tuberías utilizadas en los sistemas de alcantarillado con el fin de transportar ya sea aguas residuales o pluviales desde su origen hasta el destino final. (Donald y Hobart, 2012)

Modelo: un modelo es la representación simplificada de un sistema, proceso o fenómeno del mundo real, el cual, es utilizado para estudiar el comportamiento, realizar predicciones y es influyente en la toma de decisiones. Den el contexto científico, los modelos pueden ser físicos, matemáticos, computacionales o conceptuales y se construyen utilizando datos, teorías y suposiciones relevantes. (Banks et al. 2005)

Pozos de inspección: es una estructura construida en el sistema de alcantarillado para permitir el acceso a las tuberías con el propósito de inspeccionar, limpiar y mantener el

sistema. Estos pozos están diseñados para facilitar el mantenimiento y la reparación e la red de alcantarillado. (Hammer y Hammer, 2014).

Salud Pública: la salud pública es el campo de estudio y practica que se enfoca en la promoción, protección y mejora de la salud de las poblaciones y comunidades. Se logra, por medio de intervenciones políticas destinadas a prevenir enfermedades, prolongar la vida y fomentar estilos de vida saludables, así mismo, mediante la vigilancia y el control de enfermedades y lesiones. (Turnock, 2016).

Tramos: son segmentos de tuberías en un sistema de alcantarillado, los cuales, conectan a puntos de entrada y salida, que pueden tener diferentes características hidráulicas. (Butler y Davies, 2000)

Vertimiento: es la liberación controlada de aguas residuales tratadas o no tratadas al medio ambiente, generalmente transportada por medio de un sistema de alcantarillado o directamente a cuerpos de aguas. (Tchobanoglous et al., 2003).

16

Resumen

Propuesta de optimización de la red de alcantarillado de la vereda Morca, del municipio de Sogamoso-Boyacá empleando el software SewerCAD:

El presente trabajo de grado expone el actual estado de la red sanitaria en la vereda de Morca del municipio de Sogamoso en el departamento de Boyacá, donde el principal objetivo es proponer una solución integral para optimizar el sistema actual de alcantarillado actual del sector.

Para dar desarrollo al proyecto, inicialmente se realiza un análisis del estado actual del sistema de alcantarillado, donde se identifican aquellos puntos críticos en el sistema, problemas de funcionamiento y continuidad del mismo, donde se analizan las características hidráulicas del terreno y las condiciones climáticas.

Posteriormente y con base en el diagnóstico realizado se desarrolla una modelación del sistema actual en el software SewerCAD en condiciones reales, donde se generan resultados pertinentes para observar el comportamiento de la red sanitaria, de igual forma, permite la evaluación de la eficiencia basados en los resultados generados en dicha modelación.

Finalmente, basados en los resultados generados por el modelo y considerando el diagnostico, donde fue pertinente tomas el RAS 2000 y sus modificaciones, donde se plantea la propuesta que mejor se adapte a las condiciones del sistema, minimizando costos y tiempo.

Palabras Clave: Red sanitaria, normativa, catastro, modelación, drenaje, saneamiento, alcantarillado, aguas residuales.

17

Abstract

Proposal for the optimization of the sewerage network in the Morca district of the municipality of Sogamoso-Boyacá using SewerCAD software:

The present degree work exposes the current state of the sanitary network in the Morca district of the municipality of Sogamoso in the department of Boyacá, where the main objective is to propose a comprehensive solution to optimize the current sewage system of the sector.

To develop the project, initially an analysis of the current state of the sewage system is carried out, where those critical points in the system, problems of operation and continuity of the system are identified, where the hydraulic characteristics of the terrain and the climatic conditions are analyzed.

Subsequently, and based on the diagnosis made, a modeling of the current system is developed in the SewerCAD software in real conditions, where pertinent results are generated to observe the behavior of the health network, in the same way, it allows the evaluation of efficiency based on the results generated in said modeling.

Finally, based on the results generated by the model and considering the diagnosis, where the RAS 2000 and its modifications were relevant, the proposal that best adapts to the conditions of the system is proposed, minimizing costs and time.

Keywords: health network, normative, cadastre, modeling, sewer system, sanitation, sewage water.

Introducción

Actualmente, la implementación de sistemas de abastecimiento de agua y de saneamiento, son factores importantes en la conservación del bienestar de los pueblos y que en mayor grado disfrutan los países desarrollados. El estudio se basó en las investigaciones, con relación en el campo de saneamiento y específicamente el transporte de aguas residuales, para los cuales en la mayorías de los casos, busca la incorporación de tuberías complementarias, ampliación de diámetros en sectores pertinentes y mejoramiento del diseño del sistema en general, partiendo de la recolección de información primaria y secundaria, tomando en cuenta la normativa vigente no solo para generar modelos donde se simule en condiciones reales el comportamiento de la estructura, asimismo, busca garantizar a las comunidades una red eficiente.

Pues bien, morca siendo un lugar tan importante para el municipio de Sogamoso, departamento de Boyacá, se puede evidenciar la ausencia de una red de alcantarillado eficiente, lo cual, refleja la poca gestión sobre el manejo de las aguas residuales. Es evidente la necesidad de diseñar e implementar un sistema de alcantarillado que no solo cumpla con estándares técnicos elevados, sino que también se ajuste a las realidades y necesidades específicas de la comunidad.

Por tal motivo, se ve pertinente, en un enfoque metodológico del presente trabajo, es de carácter experimental y aplicada pues será necesario el uso de herramientas y técnicas para la recolección de información que serán aplicadas para dar solución al objetivo general, por consiguiente, se debe realizar una revisión bibliográfica acerca de optimización de alcantarillados, donde es pertinente identificar puntos críticos en la zona de estudio, posteriormente se aplicará un modelo con los parámetros establecidos para conocer el comportamiento de la red bajo condiciones reales mediante el software SewerCAD, generando resultados en cuanto a parámetros operacionales y de eficiencia dentro del sistema.

Posteriormente, según los resultados de la modelación presentada del sistema actual de alcantarillado, se propone y se sugiere la implementación 1409.34 metros de tuberías y de 31 pozos nuevos de inspección, el cual mantendrá el régimen de alcantarillado combinado, pero será en material PVC, con esto ya no se realizarían vertimientos inadecuados a predios

baldíos o privados, y al contrario se conduciría de manera unificada hacia la Quebrada las Torres.

Diagnóstico del alcantarillado actual de la vereda de Morca del municipio Sogamoso

Localización

La vereda Morca se encuentra en el municipio de Sogamoso, ubicado a una latitud de 5.71667 y una longitud de -72.90004, con una altitud de 2.569 metros sobre el nivel del mar (m.s.n.m.). Sogamoso está situado aproximadamente a 80 kilómetros de Tunja, la capital del departamento de Boyacá como se muestra en la figura 1.

Figura 1

Localización general del proyecto

Fuente: Google Earth. (2023)

División político administrativa

Como se puede observar en la figura 5, limita al norte con el sector de San José, al noroccidental con La Ramada, en la zona sur occidental limita con Ombachita, al sur con El Motiñal, y al oriente con el municipio de Tópaga.

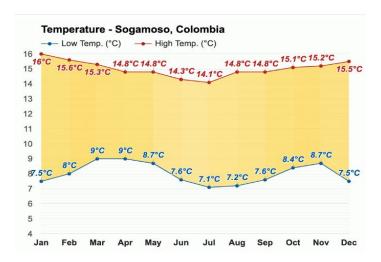
Figura 2División político administrativa de Sogamoso

Fuente: Municipio de Sogamoso. (2012). *Plan de Desarrollo Municipal. Sogamoso- Boyacá.* https://sogamoso.org/PDM-SOGAMOSO-2012-2015/1%20-%20GENERALIDADES.pdf

Generalidades

Es importante considerar las condiciones meteorológicas de la zona de estudio, a continuación, se presenta la recopilación con descripciones relacionadas con respecto a la climatología, la precipitación, hidrología, hidrografía, topografía, geología y suelos, de tal forma, se puedan modelar el diseño actual de la red de alcantarillado.

Climatología


Los meses más cálidos (con máximo promedio de temperatura alta son enero, Febrero Marzo, octubre, noviembre y Diciembre (15.5°C). El mes con el promedio de Temperatura alta más bajo es Julio (14.1°C).

Por su ubicación altitudinal, Sogamoso tiene un clima templado promedio de 14.8°C se ha visto alterado en años recientes por el calentamiento global.

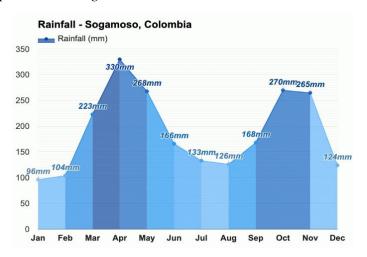
El fenómeno climático en el Valle de Sogamoso, donde se observa un ciclo diario que emula ciclos de las estaciones. Durante las 6 am y el medio día, se experimentan condiciones

climáticas similares a la primavera. Desde el mediodía hasta las 5 pm se asemeja al verano, seguido de características otoñales hasta las 10 u 11 pm. El punto más bajo es alrededor de las 3 am., pudiendo llegar a cero grados e incluso menos. Atribuido a la altitud en la que se encuentra ubicado el municipio referente al nivel del mar.

Figura 3 *Temperatura de Sogamoso – Boyacá*

Fuente: secretaria de Salud de Sogamoso. (2019). Análisis de situación de salud con el modelo de los determinantes sociales de Salud, municipio de Sogamoso Boyacá 2019. Secretaria de Salud

Precipitación


De acuerdo a la figura 5, la temporada más mojada se extiende, desde marzo hasta junio y desde septiembre hasta noviembre, sin embargo, el mes con más días de solo lluvia en Sogamoso es abril. Por otro lado, la temporada más seca abarca desde diciembre hasta febrero. El mes con la menor cantidad de días mojados en Sogamoso es enero.

Esta información sobre la distribución y frecuencia de días mojados y el tipo de precipitación puede ser valiosa para diversas actividades y planificación, ya que permite tener en cuenta los patrones climáticos para diferentes propósitos, como agricultura, gestión del agua y desarrollo de proyectos en la región.

Debe usarse en la estimación del caudal pico de aguas lluvias, corresponde a la intensidad media de precipitación dada por la curva de Intensidad-Duración-Frecuencia

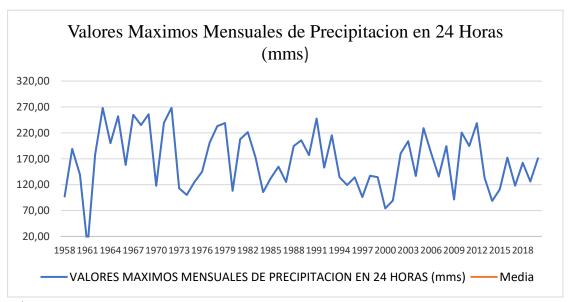

(IDF) para el periodo de retorno de diseño definido y una precipitación equivalente al tiempo de concentración de la escorrentía.

Figura 4 *Precipitación de Sogamoso*

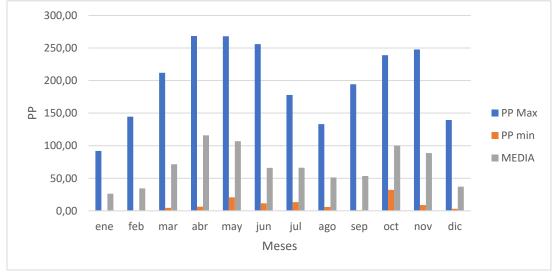
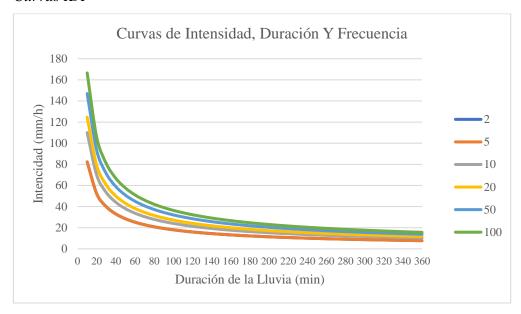

Fuente: secretaria de Salud de Sogamoso. (2019). Análisis de situación de salud con el modelo de los determinantes sociales de Salud, municipio de Sogamoso Boyacá 2019. Secretaria de Salud

Figura 5Valores máximos mensuales de precipitación en 24 horas.

Fuente: Autores

Figura 6Precipitaciones presentadas durante el año

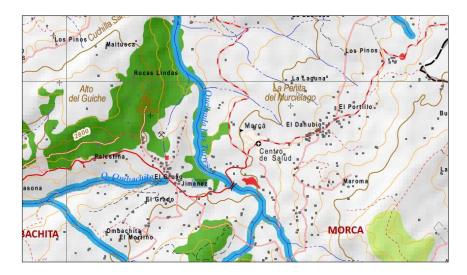


Fuente: Autores

De acuerdo a los valores de precipitación, presentados por la Estación Monguí, se realizan las Curvas IDF, las cuales nos proporcionan valores de intensidad, frecuencia y duración de la lluvia. La curva IDF típica muestra cómo la intensidad de la lluvia varía con la duración del evento y la probabilidad de que ocurra dicho evento en un período de tiempo dado. Estas curvas son fundamentales en el diseño de infraestructuras hidrológicas y de drenaje, como sistemas de alcantarillado, presas, y para evaluar riesgos de inundaciones.

Figura 7

Curvas IDF



Fuente: Autores

Hidrografía

Según la información descrita en el Plan de Ordenamiento Territorial (POT), del año 2017, del municipio de Sogamoso, se reporta que la Quebrada las Torres en las proximidades del centro poblado de Morcá. Esta Corriente a la cual llegan los vertimientos de la mayoría de las explotaciones de carbón del área de Morcá. De igual forma se ubica como una de las corrientes más importantes dentro del municipio de Sogamoso esta tiene un recorrido aproximado de 6 kilómetros de oriente a occidente. Así como se observa en la siguiente figura.

Figura 8 *Hidrografía de Morcá*

Fuente: Municipio de Sogamoso. (2012). *Plan de Desarrollo Municipal. Sogamoso- Boyacá*. https://sogamoso.org/PDM-SOGAMOSO-2012-2015/1%20-%20GENERALIDADES.pdf

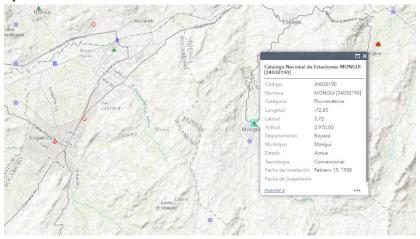
Hidrología

Información hidroclimatológica. En la zona de estudio se dispone de varias estaciones hidrometeoro lógicas que permiten caracterizar los regímenes de las principales variables climáticas e hidrométricas: precipitación, evaporación, humedad relativa, temperatura y caudales.

Como se evidencia en la Tabla 1. Se relaciona las estaciones más cercanas al proyecto, además se relacionan las características principales de las estaciones empleadas en este estudio y en la siguiente tabla se presenta su localización respecto a la zona de estudio. Esta estación es operada por el IDEAM.

Estaciones cercanas al proyecto

Tabla 1 *Información de las estaciones*


Municipio	Nombre	COD	Categoría	Altitud	Coordenadas		
Monguí	Monguí	24035150	Climática	2530	5.781583° 72.894306°		
	Wongui	24033130	Principal	2330	3.761363 72.694300		

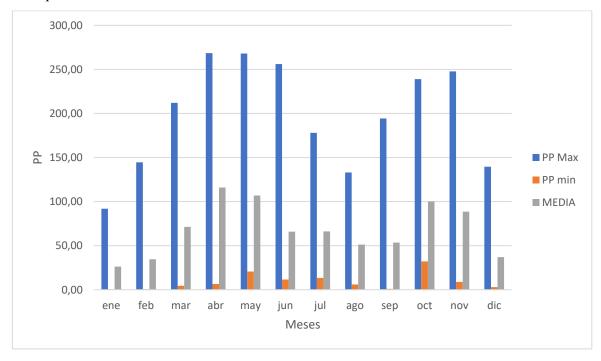
Fuente: IDEAM – adaptada por Autor

Se entiende como estación meteorológica al equipo de medición con el que se hacen observaciones y mediciones puntuales de los diferentes parámetros meteorológicos en un sitio determinado, con el fin de establecer el comportamiento atmosférico en las diferentes zonas de un territorio.

En la siguiente figura 9, se puede observar la distribución espacial de las estaciones que tienen influencia en el área de trabajo definida.

Figura 9Distribución espacial de las estaciones

Fuente: VISOR CNE Catálogo Nacional de Estaciones, 2024


Análisis estaciones pluviométricas. Con relación a la información de precipitación empelada, se usa con la Estación Belencito la cual tiene un periodo de datos más robusto que

estaciones aledañas, sumado a que dicha estación se encuentra cercana al punto de interés de la quebrada Las Torres.

La hidrología para el diseño de estructuras se puede definir como la estimación de la escorrentía máxima de un área o cuenca aportante para un período de retorno o de recurrencia definido. Para poder evaluar la cantidad de agua superficial en un punto de interés es necesario efectuar un estudio hidrológico del área que drena en el tramo en estudio. En este capítulo se estimará la cantidad de agua lluvia que se convierte en escorrentía a lo largo de la vía objeto de este estudio.

Información analizada. La distribución temporal o comportamiento durante el año es de tipo bimodal, es decir, hay dos periodos húmedos y dos periodos secos. Las lluvias comienzan en el mes de marzo y van aumentando hasta llegar al tope máximo en el mes de mayo, presentando valores promedio de 106.8 mm, durante este primer periodo húmedo se mantiene las lluvias pues se presentan altas precipitaciones. Durante el mes de junio hasta el mes de septiembre se presenta un periodo de estiaje, con precipitaciones promedio mínimas de 68.85 mm siendo el mes de agosto el más crítico, con precipitaciones de 51.17 mm y desde el mes de octubre hasta el mes de diciembre se genera la segunda época húmeda del año, presentando la mayor precipitación promedio en el mes de diciembre de 37.05 mm. Finalmente, para completar el ciclo entre el mes de enero y febrero se presenta otro periodo de sequía siendo, con precipitaciones de 26.19 y 34.84 mm.

Figura 10 *Precipitaciones en el transcurso del año*

Fuente: Autores

Tabla 2Valores mensuales de precipitación de la Estación Monguí

Valores Ma	Valores Máximos Mensuales de Precipitación en 24 Horas (mms)												
Fecha de Proces	so:									Estación:	Monguí [24	030190]	
Latitud	5,724555556		Tipo Est:	Climática Pr	incipal		Depto.	Boyacá		Fecha-Instala	ción .	4/05/1971	
Longitud	-72,8478611		Entidad	01 IDEAM			Municipio	Mongua		Fecha-Suspen	sión_		
Elevación	2970		Regional	Boyacá-Casa	an								
Año	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic	MAX
1958		34,00	14,00	48,00	86,00	62,00	23,00	59,00	28,00	97,00	29,00	50,00	97,00
1959	7,00	15,00	29,00	25,00	117,00	42,00	87,00	50,00	75,00	189,00	69,00	25,00	189,00
1960	42,00	25,00	116,00	34,00	97,00	44,00	130,00	71,00	41,00	126,00		139,50	139,50
1961													0,00
1962	58,00	18,00	110,00	34,00	178,00	106,00	128,00	22,00	28,00	94,00	114,00	36,00	178,00
1963	6,00	10,00	24,00	208,00	268,00	126,00	64,00	54,00	40,00	116,00	60,00		268,00
1964				112,00	200,00	112,00	124,00	32,00	40,00	100,00	80,00	8,00	200,00
1965			8,00	252,00	140,00		16,00	48,00		74,00	188,00	78,00	252,00
1966		16,00	108,00	56,00	140,00	56,00	26,00	36,00	40,00	158,00	50,40	127,00	158,00
1967	5,00	25,00	212,00	255,00	131,00	134,00	178,00	12,00	119,00	60,00	100,00	20,00	255,00
1968	17,00	35,00	35,00	235,00	130,00	125,00	78,00	40,00	25,00	77,00	65,00	10,00	235,00
1969	90,00	10,00	5,00	221,00	187,00	256,00	61,00	133,00	51,00	207,00	112,00	5,00	256,00
1970	30,50	59,00	29,00	8,00	71,00	93,00	83,00	78,00	82,50	108,50	118,00	29,00	118,00
1971	78,00	99,00	148,50	149,50	239,50	47,00	88,50	83,00	105,50	107,50	36,50	30,00	239,50
1972	87,00	33,50	115,00	268,50	81,50	108,00	43,00	13,00	39,00	48,00	49,00	23,00	268,50
1973	10,00		49,00	50,00	36,00	50,00	36,00	57,00	74,00	106,00	113,00	57,00	113,00
1974	18,00	63,00	90,00	70,00	88,00	45,00	67,00	32,00	100,00	56,00	94,00	12,00	100,00
1975		47,00	23,00	82,00	73,00	73,00	70,00	32,00	80,00	125,00	72,00	92,00	125,00

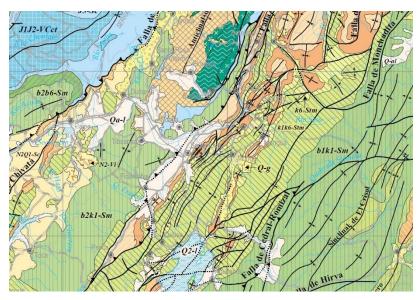
1976	12,00	31,00	131,00	110,00	36,00	94,00	145,00	47,00	41,80	127,00	104,00	49,00	145,00
1977			60,00	102,00	108,00	76,00	40,00	82,00	90,00	115,00	201,00	23,00	201,00
1978	2,00	25,00	81,00	233,00	95,00	69,00	56,00	60,00	121,00	120,00	92,00	27,00	233,00
1979		13,00	134,00	162,00	108,00	167,00	82,00	51,00	51,00	239,00	187,00	29,00	239,00
1980	17,00	61,00	11,00	40,00	56,00	106,00	89,00	56,00	82,00	108,00	65,00	3,00	108,00
1981	8,00	22,50	19,00	154,70	207,80	68,70	68,20	68,60	72,40	118,80	51,10	26,00	207,80
1982	2,10	49,70	105,70	221,30	135,80	20,40	33,00	62,30	32,50	135,10	101,90	20,90	221,30
1983		23,20	43,20	172,50	145,80	29,90	49,10	42,10	24,00	63,70	41,00	28,90	172,50
1984	17,30	25,30	9,40	105,50	83,80	11,50	29,20	104,40	61,60	32,20	83,50	13,40	105,50
1985	19,50	25,70	64,30	52,50	90,50	32,60	42,00	54,50	90,30	132,30	42,10		132,30
1986	8,50	144,50	92,60	151,70	54,60	71,40	107,40	73,00	13,00	154,80	68,60		154,80
1987			33,00		125,20		103,30	90,30	67,20	91,90	114,30	27,90	125,20
1988		23,80		67,60	80,60	15,30	104,20	31,30	194,30	153,90	41,40	18,50	194,30
1989		20,50	167,30	19,20	205,70	56,60	44,80	20,80	71,00	44,90	53,20	21,40	205,70
1990	6,40	44,00	130,70	177,10	80,50	46,90	54,70	36,30	9,80	99,20	154,30	79,80	177,10
1991	33,80	12,20	120,50	122,30	127,60	21,70	53,70	41,20	50,10	45,00	247,70	61,40	247,70
1992	0,50	39,90	33,70	116,00	56,80	16,70	65,00	59,80	84,70	45,20	152,80	21,30	152,80
1993	18,10	42,30	45,60	147,00	215,30	59,90	106,80	16,00	27,80	59,10	131,70	18,60	215,30
1994	31,20	59,00	112,10	87,00	134,30	42,10	56,70	72,60	39,90	102,20	83,80		134,30
1995	0,50	79,00	74,20	76,50	64,30	119,10	48,70	45,10	24,80	18,60	8,90	86,80	119,10
1996	91,90	44,50	131,90	80,40	78,30	50,30	107,80	59,20	28,20	134,20	41,30	19,80	134,20
1997	31,50	0,60	66,30	59,20	95,90	84,30	85,10	27,40	32,10	49,30	44,20	13,70	95,90
1998	7,10	25,50	61,40	132,00	137,20	58,10	74,70	69,60	92,50	109,40	28,70	92,40	137,20
1999	57,20	63,20	77,30	106,30	20,60	66,30	62,40	90,10	134,40	82,30	64,30	14,80	134,40
2000	49,00	63,50	67,40	69,30	29,00	46,20	57,10	53,80	70,10	74,20	40,10	9,60	74,20
2001	0,50	44,10	14,20	6,40	52,60	39,80	59,10	38,00	70,70	49,90	39,50	89,20	89,20
2002	9,20	9,40	45,60	179,90	64,80	48,40	42,10	40,30	29,90	47,90	41,40	24,50	179,90
2003	2,20	37,50	94,50	129,30	43,10	62,30	89,50	1,60	78,20	203,80	89,20	63,70	203,80
2004	27,70	49,50	32,70	136,70	115,70	31,90	33,90	51,00	59,30	104,50	59,50		136,70
2005	24,60	23,30	33,40	81,40	229,20	32,20	13,40	45,70	38,00	187,70	90,50		229,20

2006	33,40		107,10	181,10	165,40	51,80	40,80	74,30	28,40	129,20	92,60	22,70	181,10
2007	7,10	12,30	41,70	135,60	104,90	61,70	25,40	71,90	16,00	133,60	72,00	25,00	135,60
2008	60,80	38,40	38,60	63,30	123,50	29,20	92,20	71,30	40,80	102,70	194,40	25,40	194,40
2009	58,50	13,80	68,00	54,60	91,30	78,10	45,30	61,30	25,40	90,20	36,20		91,30
2010	6,50	7,60	22,60	220,60	118,80	93,50	141,90	61,20	62,50	115,50	157,20	47,50	220,60
2011	2,20	64,70	97,60	194,70	137,10	51,50	42,10	54,70	35,70	131,20	155,90	126,00	194,70
2012	26,10	2,10	111,70	238,80	61,50	23,90	111,90	28,60	24,20	74,50	38,20	4,30	238,80
2013		42,10	4,50	133,10	83,50	14,90	84,50	49,40	19,90	48,30	95,00	21,80	133,10
2014	8,30	39,50	75,60	53,00	43,00	65,20	38,20	5,90	9,40	71,10	88,60	37,60	88,60
2015	4,80	29,80	59,00	34,50	28,70	111,00	58,70	57,70	1,00	49,60	42,00	10,20	111,00
2016	17,90		38,30	73,10	46,10	14,00	37,60	31,30	34,90	84,20	172,30	29,80	172,30
2017	52,70	28,40	88,60	8,50	117,80	63,90	48,50						117,80
2018	21,80	25,60	32,80	162,10	35,70	23,90	53,90	21,90	21,20	123,90	43,10		162,10
2019	39,20	5,90	60,30	126,10	72,30	79,10	41,80	44,80	20,60	74,90	90,50	18,30	126,10
2020	21,80	28,30	44,30	27,10	26,00	75,60	36,40	68,70	43,40	37,60	170,90	8,40	170,90
2021	2,10	22,30	64,80	109,80	88,80	72,10	18,20	89,60	20,30	75,40	25,00	24,20	109,80
2022	62,20	42,80	78,40	79,70	143,90	47,30	30,00	31,60	62,90	63,10	107,50	11,50	143,90
2023	36,40	4,30	254,20	121,00	117,40	68,00	47,00	7,40					254,20
MAX	91,90	144,50	212,00	268,50	268,00	256,00	178,00	133,00	194,30	239,00	247,70	139,50	268,50
MIN	0,50	0,60	4,50	6,40	20,60	11,50	13,40	5,90	1,00	32,20	8,90	3,00	0,00
MEDIA	26,19	34,48	71,37	115,99	106,87	65,85	66,17	51,17	53,50	100,05	88,63	37,05	68,11

Fuente: Autores

La precipitación es un factor fundamental en el diseño y la gestión de sistemas de alcantarillado. Se deben considerar los datos de precipitación para dimensionar adecuadamente los sistemas, prevenir inundaciones, gestionar el exceso de caudal, planificar sistemas de almacenamiento, evaluar impactos climáticos, asegurar la calidad del agua, y controlar la erosión y sedimentación, los datos del último año ilustrados en la tabla 12, son pertinentes para tanto para la modelación.

Geología y suelos


Formación guaduas. La base se compone de 250 m de arcillolitas grises con intercalaciones ocasionales de areniscas fiables, sobre las que yacen 270 metros acilliolitas grises, areniscas friables y mantos de carbón explotable. El techo llega a 50 metros, compuesto por arcillolitas verduscas y violáceas, con bancos de areniscas fiables. Su espesor sobre pasa los 550 metros, se localiza principalmente en los alrededores. (Peñarete y Rodríguez, 2015).

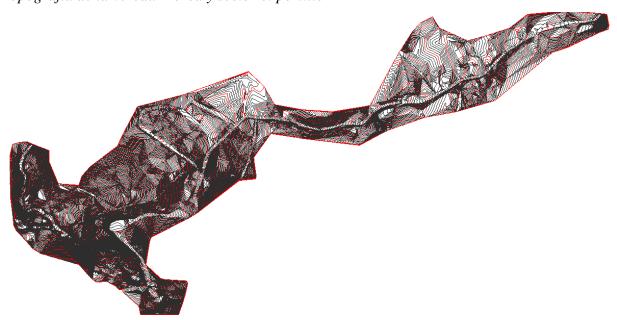
Formación guaduas (Ksg). Geológicamente el término Guaduas fue creado por Hettner al llamar "Piso de Guaduas" a rocas sedimentarias que suprayacían el "Piso de Guadalupe" en el Sinclinal de Guaduas. Desde entonces ha tenido diversas modificaciones Está representada primordialmente por arcillas negras, grises, pardas, amarillas y rojas, en general muy meteorizadas. En menor proporción hay delgadas capas de arenisca blanca o café y algunas en bandas grises y blancas dando laminación ondulada y lenticular. Su grano es generalmente fino, pero también lo hay muy fino y medio. De acuerdo con la litología, descrita por varios autores, el conjunto presenta la transición de la deposición de sedimentos en condiciones marinas del Cretáceo a las condiciones continentales que prevalecieron en el Terciario.

Litológicamente esta formación está constituida por dos miembros fácilmente diferenciables; el Miembro inferior conformado básicamente por arcillolitas físiles y lutitas pardas a negras de considerable espesor, intercaladas con niveles arenosos de espesor variable. El miembro Superior consta de continuas alternancias de niveles de areniscas delgadas, arcillolitas grises y amarillentas y mantos de carbón económicamente explotables

con espesores que oscilan entre 0.60 y 4.0 m. Las areniscas presentes en la parte media de este miembro son de carácter lajoso de grano fino a medio y miden alrededor de 12 m. La edad asignada a esta formación es del Maestrichtiano Superior, correspondiendo a un depósito de "facies parálica" en lagunas y pantanos de gran extensión adyacentes a la línea de costa. (Municipio de Sogamoso, 2012)

Figura 11Geología de la zona de estudio

Fuente: Municipio de Sogamoso. (2012). *Plan de Desarrollo Municipal. Sogamoso- Boyacá*. https://sogamoso.org/PDM-SOGAMOSO-2012-2015/1%20-%20GENERALIDADES.pdf


Depósitos aluviales antiguos (Tsa). Depósitos constituidos por conglomerados aluviales de gran espesor pueden observarse en varios sitios de la región. Al occidente de Sogamoso el conglomerado presenta elementos de dimensiones variables, pero con mayor frecuencia entre 20 a 25 cm. Los cantos son exclusivamente de areniscas proveniente de las formaciones cretáceas.

Los depósitos aluviales de este tipo son probablemente los terrenos postandinos más antiguos de la región y su edad se coloca en toda probabilidad en el pleistoceno inferior. El hecho de estar constituidos de material proveniente de areniscas cretáceas indica que los conglomerados se acumularon al quedar expuestos a extensas áreas de las formaciones cretáceas, fenómeno debido tal vez a un "destape". (Municipio de Sogamoso, 2012).

Topografía

La topografía del terreno es un influyente para el diseño de la red de alcantarillado, donde a simple vista se evidencia una pendiente natural, gracias a esta se puede idénticas áreas bajas y depresiones en las que se pueden acumular aguas lluvias, y sean lugares en los cuales se puede estar saturando dicho sistema. Por otro lado, es pertinente para determinar la correcta ubicación de los pozos de inspección.

Figura 12Topografía de la vereda Morca y sector el portillo

Fuente: Municipio de Sogamoso. (2010). Plan Maestro de Acueducto y Alcantarillado. Sogamoso – Boyacá. http://sogamoso.org/pot/archivos/03SERVICIOSPUBLICOS.pdf

Aspectos socioeconómicos

El carbón, las arcillas y la caliza son minerales importantes y con gran potencial para la economía del sector. Los cuales se encuentras distribuidos geológicamente en diferentes zonas del departamento de Boyacá, una de ella es en Sogamoso en la zona del sector de Morcá.

La principal actividad económica en Morcá es la minería, puesto que los hombres del sector (57,5%) se dedican a picar o cortar carbón. Por su parte, las mujeres (47%) se dedican a la alfarería. Otros habitantes del sector realizan sus labores económicas a la agricultura, Sin embargo, y según la tradición histórica tanto del municipio de Sogamoso como del sector de Morcá, se transformas las cerámicas en artesanías de Colombia y el gobierno nacional al centro artesanal, a partir de esfuerzo públicos y privados que garanticen el capital de inversión, la organización del sector, el aprovechamiento eficaz y eficientemente los recursos existentes y las condiciones de comercialización. (Peñarete y Rodríguez, 2015).

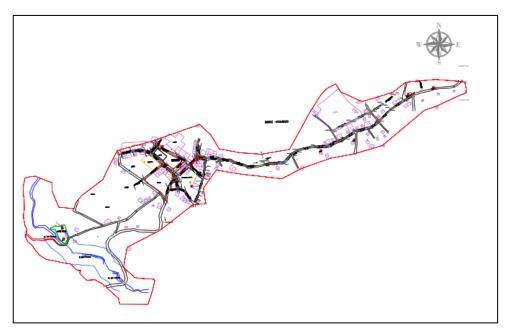
Estado actual del servicio del alcantarillado sanitario

El sistema de alcantarillado sanitario existente, atiende la población ubicada en dos sectores de la vereda de morca, el centro poblado y en el sector denominado el portillo referente a la información proporcionada por COSERVICIOS S.A. E.S.P. superior al 90% del total de los habitantes ubicados en los lugares anteriormente mencionados se encuentran conectadas a las redes del servicio de alcantarillado existente.

El sistema de alcantarillado del centro poblado de Morca, está conformado por redes en concreto simple de 10" en mal estado, con una antigüedad superior a los 30 años por lo que se consideran obsoletas, puesto que estas abarcan pocos tramos, partiendo de las necesidades de cobertura de este servicio, por otro lado, se destaca la carencia de un colector unificado y de un sistema de tratamiento de garantice el cumplimiento de las normativas ambientales y sanitarias vigentes, por otro lado, cabe resaltar que los pozos de inspección están conformados por ladrillo y tapas de concreto, por lo que loa estructura de varios de estos pozos se encuentra colapsada y varias de estas tapas rotas, asimismo, en algunos tramos de la tubería interna.

Ahora bien, el sector el Portillo se tiene la presencia de dos ramales que convergen al final en un solo pozo, según información suministrada por COSERVICIOS S.A E.S.P. la tubería se encuentra conformada por una sola red de 8" en PVC; el primer ramal presenta una sección inicial de aproximadamente 220 m de tubería en concreto simple de 16", posteriormente cambia a tubería tipo Novafort de 8". El segundo ramal, el cual, cruza por el centro de la vía, está construido con tubería de PVC- tipo Novafort de 6" y 8". Sin embargo,

en cuanto a la infraestructura de PVC y los pozos aferentes, asociados en ambos ramales, se encuentran en buenas condiciones, en tanto que el tramo de red construido en concreto simple y sus pozos correspondientes, se encuentran deteriorados.


Por el momento, el tramo de alcantarillado procedente de este sector, no se encuentra conectado a la red del centro poblado de Morca, significando así, la falta de continuidad del sistema, por lo que el vertimiento de estas aguas se realiza sobre un lote adjunto a la vía, realizándose la descargar por medio de la tubería de 10" tipo Novafort. Con pozos de inspección colmatados, sin tapas y sin cañuelas, agregado a esto el sistema no cuenta con planta de tratamiento para aguas residuales.

Catastro de la red de alcantarillado inventario de colectores y pozos

La red de alcantarillado del centro poblado de Morcá y el portillo se destaca el catastro de redes, debido a que esta información fue suministrada por la compañía de Servicio Público de Sogamoso S.A. E.S.P.

El catastro de la red de alcantarillado es una herramienta esencial para facilitar mapeo y documentación de la infraestructura existente en la zona de influencia, incluyendo tuberías, pozos de inspección, colectores, entre otros. De tal manera conocer el estado actual del sistema.

Figura 13Catastro de redes de alcantarillado actúa del centro poblado Morca y Sector el portillo

Fuente: Municipio de Sogamoso. (2010). *Plan Maestro de Acueducto y Alcantarillado. Sogamoso – Boyacá*. http://sogamoso.org/pot/archivos/03SERVICIOSPUBLICOS.pdf

Tabla 3 *Inventario de pozos existentes en el área de influencia*

Pozo	Coordenada X	Coordenada Y	Elevación	Cota batea
PZ-4	1132176.7233	1124721.2355	2867.52	2866.52
PZ-5	1132151.0100	1124706.6290	2865.62	2864.27
PZ-6	1132110.2285	1124680.3916	2861.86	2860.51
PZ-7	1132074.2186	1124644.2276	2859.33	2857.98
PZ-8	1132042.4196	1124625.0589	2856.47	2855.12
PZ-9	1132006.9708	1124619.2307	2853.64	2852.29
PZ-10	1131972.6749	1124598.2070	2850.43	2849.08
PZ-11	1131952.7677	1124589.5275	2848.98	2847.47
PZ-12	1131917.1350	1124575.5430	2847.01	2845.70
PZ-13	1131885.3720	1124576.4890	2845.48	2843.87
PZ-14	1131830.4465	1124566.1029	2842.09	2839.74
PZ-15	1131815.3498	1124556.4225	2840.80	2838.41
PZ-16	1131790.2531	1124530.3455	2837.70	2835.41
PZ-17	1131750.2500	1124530.8040	2834.96	2833.56
PZ - V1	1131739.0950	11244511.8370	2832.11	2832.11

PZ-18	1131707.7352	1124521.2161	2831.87	2830.04
PZ-19	1131678.9665	1124523.5316	2839.89	2827.45
PZ-20	1131639.1375	1124538.9644	2826.20	2824.37
PZ-21	1131600.6582	1124546.8359	2822.10	2820.66
PZ-22	1131560.1390	1124549.7905	2818.35	2816.92
PZ-23	1131537.8490	1124551.6247	2816.27	2813.81
PZ-24	1131530.6715	1124548.1761	2815.56	2813.72
PZ-25	1131511.9138	1124532.4020	2813.69	2812.25
PZ-26	1131472.0283	1124493.9361	2808.64	2806.80
PZ-27	1131450.4588	1124471.9430	2805.93	2804.49
PZ - V2	1131437.2020	1124428.1710	2800.79	2799.35
PZ-38	1132125.4612	1124724.2466	2863.59	2862.01
PZ-39	1132087.5790	1124695.9897	2859.46	2857.88
PZ-40	1132051.5433	1124674.7806	2857.15	2854.47
PZ-41	1131990.8906	1124651.6172	2851.827	2850.246
PZ-42	1131934.1189	1124621.2022	2847.13	2846.139
PZ-47	1131525.2702	1124421.0332	2827.092	2825.654
PZ-48	1131537.1170	1124447.1138	2826.127	2824.289
PZ-49	1131552.9774	1124496.2982	2822.5	2821.462
PZ-49 a	1131560.6280	1124497.6290	2820.5	2819.462
PZ-50	1131543.4315	1124587.1893	2815.411	2815.219
PZ-51	1131538.8195	1124600.0849	2815.77	2814.418
PZ-53	1131531.8937	1124511.9155	2822.382	2820.944
PZ-55	1131524.0178	1124419.0435	2823.382	2821.944
PZ-56	1131513.6881	1124425.6248	2816.843	2815.41
PZ-57	1131497.3022	1124453.9578	2813.651	2812.21
PZ-58	1131473.9204	1124462.9307	2813.651	2812.113
PZ-58 a	1131478.4000	1124464.1750	2808.64	2806.802
PZ-59	1131509.5774	1124537.2196	2813.41	2811.972
PZ-60	1131460.1618	1124566.4663	2811.5	2810.562
PZ-61	1131419.2660	1124567.6070	2809.311	2807.873
PZ-62	1131397.4091	1124569.1927	2807.04	2805.602
PZ-63	1131433.1726	1124536.7802	2806.766	2804.328
PZ-64	1131371.2475	1124489.2681	2794.787	2792.787
PZ - V3	1131353.3690	1124450.0610	2789.85	2789.5
PZ-65	1131420.7737	1124599.5354	2809.79	2808.752
PZ-66	1131468.7969	1124499.0842	2808.308	2806.317
PZ-67	1131461.7296	1124508.3652	2807.473	2805.435
PZ-67 a	1131447.9540	1124504.1240	2806.766	2804.528
PZ-68	1131497.7803	1124541.8556	2812.148	2810.757

PZ-69	1131393.5527	1124570.6058	2806.826	2805.388
PZ-70	1131367.6220	1124580.1079	2800.5	2799.512
PZ-71	1131308.7213	1124568.8949	2796.699	2795.261
PZ-71 a	1131304.2620	1124557.2130	2794.5	2793.222
PZ-71 b	1131294.998	112495.998	2792.63	2791.352
PZ- V-4	1131291.843	1124603.233	2789.73	2788.442
PZ - 73	1131897.766	1124588.921	2846.139	2843

Fuente: Municipio de Sogamoso. (2010). Plan Maestro de Acueducto y Alcantarillado. Sogamoso – Boyacá. http://sogamoso.org/pot/archivos/03SERVICIOSPUBLICOS.pdf

El sistema de pozos de inspección se encuentra construido en ladrillo y tapas de concreto. Sin embargo, se evidencia un notable deterioro en el sistema, con varios pozos colapsados y tapas rotas. Además, es fácil percatarse del deterioro superficial en la parte interna de los pozos, así como se puede evidenciar en las siguientes figuras.

Figura 14

Estado actual de los Pozos

Fuente. Autores

Del inventario de pozos de inspección existente, se determinó que solo 15 pozos (30%) se encuentran en buen estado, mientras que 45 pozos (70%) están en mal estado. Los pozos en mal estado corresponden a los siguientes números: 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 67a, 70, 71, 71a, 73.

Tabla 4Inventario de conductos existentes en el área de influencia

Conducto	Pozo Inicial	Pozo Final	Diámetro (mm)	CBI	CBF	Material	Manning
CO-4	4	5	160	2866.52	2864.27	PVC	0.010
CO-5	5	6	160	2864.27	2860.51	PVC	0.010
CO-6	6	7	160	2860.51	2857.98	PVC	0.010
CO-7	7	8	160	2857.98	2855.12	PVC	0.010
CO-8	8	9	160	2855.12	2852.29	PVC	0.010
CO-9	9	10	160	2852.29	2849.08	PVC	0.010
CO-10	10	11	160	2849.08	2847.47	PVC	0.010
CO-11	11	12	160	2847.47	2845.70	PVC	0.010
CO-12	12	13	160	2845.70	2843.87	PVC	0.010
CO-13	13	14	160	2843.87	2839.74	PVC	0.010
CO-14	38	39	400	2862.01	2857.88	Concreto Simple	0.013
CO-15	39	40	400	2857.88	2854.47	Concreto Simple	0.013
CO-16	40	41	400	2854.47	2850.246	Concreto Simple	0.013
CO-17	41	42	400	2850.246	2846.139	Concreto Simple	0.013
CO-18	42	73	200	2846.139	2843	PVC	0.010
CO-19	73	14	200	2843	2839.74	PVC	0.010
CO-20	14	15	200	2839.74	2838.41	PVC	0.010
CO-21	15	16	200	2838.41	2835.41	PVC	0.010
CO-22	16	17	200	2835.41	2833.56	PVC	0.010
CO-23	17	V-1	200	2833.56	2832.11	PVC	0.010
CO-24	18	19	250	2830.04	2827.45	Concreto Simple	0.013
CO-25	19	20	250	2827.45	2824.37	Concreto Simple	0.013
CO-26	20	21	250	2824.37	2820.66	Concreto Simple	0.013
CO-27	21	22	250	2820.66	2816.92	Concreto Simple	0.013
CO-28	22	23	250	2816.92	2813.81	Concreto Simple	0.013
CO-29	47	48	200	2825.654	2824.289	Concreto Simple	0.013
CO-30	48	49	200	2824.289	2821.462	Concreto Simple	0.013
CO-33	49	49a	200	2821.462	2819.462	Concreto Simple	0.013
CO-34	49a	22	200	2819.462	2816.92	Concreto Simple	0.013
CO-35	50	23	160	2815.219	2813.81	PVC	0.010
CO-36	23	24	250	2813.81	2813.72	PVC	0.010
CO-37	51	24	160	2814.418	2813.72	PVC	0.010
CO-38	24	25	250	2813.72	2812.25	PVC	0.010

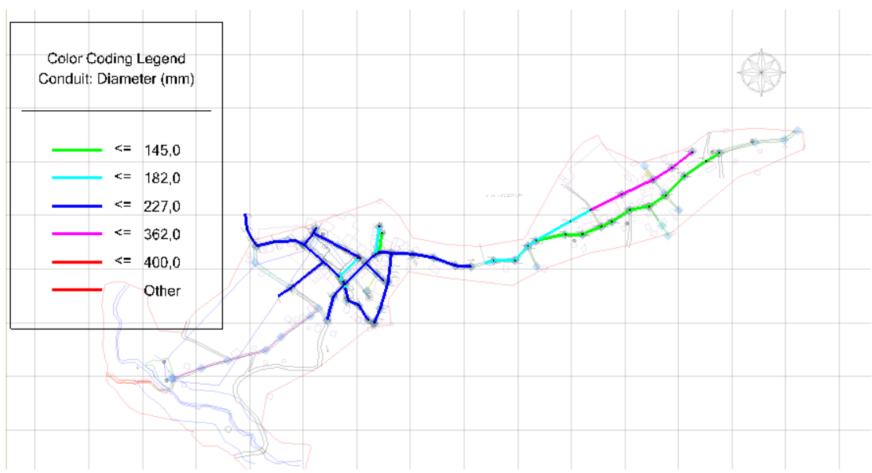
CO-39	53	25	250	2820.944	2812.25	Concreto Simple	0.013
CO-40	25	26	250	2812.25	2806.80	Concreto Simple	0.013
CO-41	55	56	250	2821.944	2815.41	Concreto Simple	0.013
						1	
CO-42	56	57	250	2815.41	2812.21	Concreto Simple	0.013
CO-43	57	58	250	2812.21	2812.113	Concreto Simple	0.013
CO-44	58	58a	250	2812.113	2806.802	Concreto Simple	0.013
CO-46	58a	26	200	2806.802	2806.80	PVC	0.010
CO-47	26	27	250	2806.80	2804.49	PVC	0.010
CO-48	27	V-2	250	2804.49	2799.35	PVC	0.010
GO 10	26		250	2006.00	2006 217	DVC	0.010
CO-49	26	66	250	2806.80	2806.317	PVC	0.010
CO-50	66	67	200	2806.317	2805.435	PVC	0.010
CO-51	68	67	200	2810.757	2805.435	PVC	0.010
CO-52	67	67a	250	2805.435	2804.528	Concreto Simple	0.013
CO-54	67a	63	250	2804.528	2804.328	Concreto Simple	0.013
CO-55	63	64	250	2804.328	2792.787	Concreto Simple	0.013
CO-56	64	V-3	250	2792.787	2789.5	Concreto Simple	0.013
			2.50	2005 502	2004.220		
CO-57	62	63	250	2805.602	2804.328	Concreto Simple	0.013
CO-58	59	60	200	2811.972	2810.562	Concreto Simple	0.013
CO-59	60	61	200	2810.562	2807.873	Concreto Simple	0.013
GO 60	(F	61	250	2000 752	2007.072	Community Simurals	0.012
CO-60	65		250	2808.752	2807.873	Concreto Simple	0.013
CO-62	61	62	250	2807.873	2805.602	Concreto Simple	0.013
CO-63	62	69	250	2805.602	2805.388	Concreto Simple	0.013
CO-64	69	70	250	2805.388	2799.512	Concreto Simple	0.013
CO-65	70	71	250	2799.512	2795.261	Concreto Simple	0.013
CO-67	71	71a	250	2795.261	2793.222	Concreto Simple	0.013
CO-68	71a	71b	250	2793.222	2791.352	Concreto Simple	0.013
CO-69	71b	V-4	250	2791.352	2788.442	Concreto Simple	0.013
20 07			_50	, 1,002	=::::::::::::::::::::::::::::::::::::::		0.013

Fuente: Municipio de Sogamoso. (2010). Plan Maestro de Acueducto y Alcantarillado. Sogamoso – Boyacá. http://sogamoso.org/pot/archivos/03SERVICIOSPUBLICOS.pdf

De los tramos existentes de la red de alcantarillado, se ha determinado que 46 de ellos (75.4%) se encuentran en mal estado. Tres tramos (5%) están en estado regular y solo 12 tramos (19.6%) se encuentran en buen estado. Es importante destacar que la mayoría de los tramos en mal estado están construidos con material de concreto, el cual no ha sido renovado en más de 30 años, como se mencionó anteriormente.

Actualmente, el tramo de alcantarillado procedente del sector El Portillo no está conectado a la red del centro poblado de Morca, como se puede observar en el plano del catastro de red existente, lo que indica una falta de continuidad funcional en el sistema. Las aguas residuales procedentes de este sector se vierten en un lote adyacente a la vía, utilizando una tubería de 10" tipo Novafort para la descarga, así como se puede evidenciar en las siguientes figuras

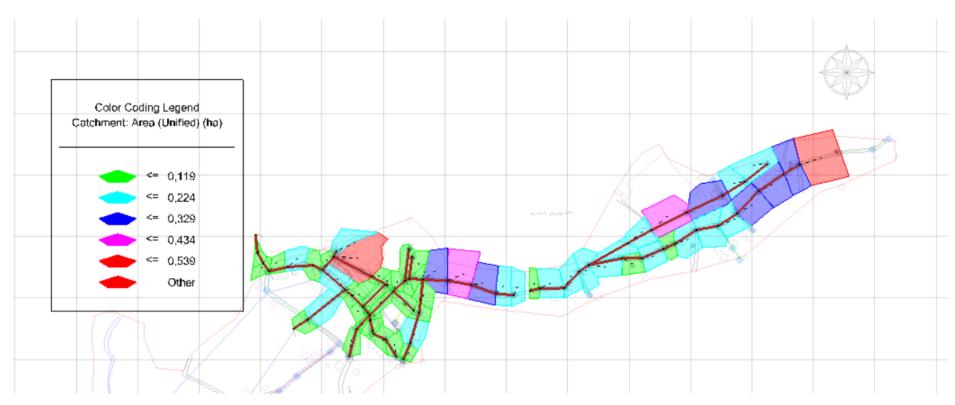
Figura 15 *Estado actual del alcantarillado*



Fuente: Autores

A lo largo de la red, también se identificó que varios tramos de la red de concreto exhiben un deterioro superficial en las paredes internas de la tubería. Este hallazgo sugiere una degradación generalizada en la infraestructura.

Figura 16Diámetros de conductos en el área de estudio



Como se puede evidenciar en la figura 16, los tramos de tubería han sido clasificados por colores en función de sus diámetros. Los tramos identificados con color verde tienen un diámetro de 6 pulgadas, abarcando un total de 12 tramos. Los tramos de color verde azulado claro corresponden a tuberías de 8 pulgadas de diámetro, con un total de 5 tramos. El color azul oscuro indica tramos de tubería de 10 pulgadas, sumando un total de 33 tramos. Finalmente, los tramos de color rosado representan tuberías de 16 pulgadas de diámetro, con un total de 4 tramos.

Áreas de drenaje

Con el fin de establecer los caudales de modelación para cada uno de los tramos del sistema de alcantarillado combinado, se determinaron las áreas aferentes teniendo en cuenta la conectividad del sistema actual, se consideró un área total de 8.52 ha distribuidas en 60 áreas de drenaje, como se observa en la figura 17.

Figura 17 Áreas de drenaje en el área de estudio

Sistema de tratamiento de aguas residuales

En la actualidad el municipio de Sogamoso y la vereda Morca, no cuenta con un sistema de tratamiento de aguas residuales.

Proyecciones de poblaciones y demanda

Se emplearon datos suministrados por COSERVICIOS S.A. E.S.P. quienes suministraron el dato del número de suscriptores. Para la proyección de la población se emplearon los métodos Aritmético, Geométrico y Exponencial, donde se manejó el dato para el centro poblado Morca y sector el portillo, en el municipio de Sogamoso, departamento de Boyacá. Como lo establece la Resolución 0330 del 2017, instaura que esta proyección debe ser en periodo de 25 años, donde, se puede apreciar que tiene un comportamiento ascendente correspondiente al periodo comprendido entre los años 2024 al 2049, por tal motivo, se calcula el caudal de abastecimiento para la cantidad de personas que se proyecta sean usuarias del servicio.

Método aritmético. El Método Aritmético supone un crecimiento vegetativo balanceado por la mortalidad y la emigración. La ecuación para calcular la población proyectada es la siguiente:

$$P_f = P_{uc} + \frac{P_{uc} - P_{ci}}{T_{uc} - T_{ci}} * (T_f - T_{uc})$$

Donde, Pf es la población (hab) correspondiente al año para el que se quiere proyectar la población, Puc es la población (hab) correspondiente al último año censado con información, Pci es la población (hab) correspondiente al censo inicial con información, Tuc es el año correspondiente al último año censado con información, Tci es el año correspondiente al censo inicial con información y Tf es el año al cual se quiere proyectar la información.

La siguiente tabla presenta los datos de la proyección de la población utilizados para determinar la población proyectada mediante el método aritmético. De igual manera, los datos de la tabla se esquematizaron obteniendo como resultado la gráfica mostrada.

Tabla 5 *Método aritmético*

Censos	de Vivienda	Método Ari	itmético					
Año	Población	Ka	2024	2029	2034	2039	2044	2049
2011	425	19.4	677	774	871	968	1064	1161
2012	430	21.4	687	794	901	1009	1116	1223
2013	455	20.8	684	788	893	997	1101	1205
2014	490	18.0	670	760	850	940	1030	1120
2015	495	21.3	686	793	899	1005	1111	1218
2016	500	26.7	713	847	980	1113	1247	1380
2017	515	32.5	743	905	1068	1230	1393	1555
2018	544							
2019	580	Promedio:	694	809	923	1037	1152	1266
Desviac	ión Estándar:		25	50	76	101	126	151
			Interva	alo de Co	nfianza			
	Zo =	1.8	649	719	786	855	925	994
			739	899	1060	1219	1379	1538

Fuente: Autores

Método geométrico. El Método Geométrico es útil en poblaciones que muestren una importante actividad económica, que genera un apreciable desarrollo y que poseen importantes áreas de expansión las cuales pueden ser dotadas de servicios públicos sin mayores dificultades. La ecuación que se emplea es:

$$P_f = P_{uc}(1+r)^{T_f - T_{uc}}$$

Donde r es la tasa de crecimiento anual en forma decimal y las demás variables se definen igual que para el método anterior. La tasa de crecimiento anual se calcula de la siguiente manera:

$$r = \left(\frac{P_{uc}}{P_{ci}}\right)^{\frac{1}{(T_{uc} - T_{ci})}} - 1$$

La siguiente tabla presenta los datos de la proyección de la población utilizados para determinar la población proyectada mediante el método geométrico. De igual manera, los datos de la tabla se esquematizaron obteniendo como resultado la gráfica mostrada.

Tabla 6 *Método geométrico*

Censos o	de Vivienda	Método Geo	ométrico)				
Año	Población	r	2024	2029	2034	2039	2044	2049
2011	425	0.03963	704	856	1039	1262	1533	1861
2012	430	0.04368	718	889	1101	1364	1689	2091
2013	455	0.04128	710	869	1064	1303	1595	1952
2014	490	0.03430	687	813	962	1139	1348	1595
2015	495	0.04041	707	862	1051	1281	1562	1904
2016	500	0.05072	743	951	1218	1560	1998	2559
2017	515	0.06123	781	1051	1414	1904	2563	3449
2018	544	0.06618	799	1101	1517	2089	2878	3966
2019	580	Promedio:	731	924	1171	1488	1896	2422
Desviaci	ón Estándar:		40	102	197	339	547	850
			Interv	alo de C	onfianza			
	Zo=	1.8	659	740	816	878	911	892
			803	1108	1526	2098	2881	3952

Fuente: Autores

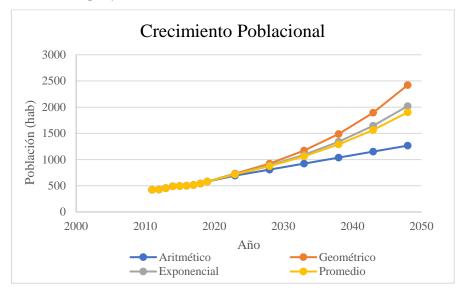
Método exponencial. Su aplicación se recomienda a poblaciones que muestre y posee abundantes áreas de expansión. Para su cálculo se utilizó la siguiente expresión:

$$P_f = P_{ci} * e^{k*(T_f - T_{ci})}$$

Donde K es la tasa de crecimiento de la población la cual se calcula como el promedio de las tasas calculas para cada par de censos, así:

$$k = \frac{LnP_{cp} - LnP_{ca}}{T_{cp} - T_{ca}}$$

La siguiente tabla presenta los datos de la proyección de la población utilizados para determinar la población proyectada mediante el método exponencial.


Tabla 7 *Método exponencial*

Censos	de Vivienda	Método	Exponencial					
Año	Población	k	2024	2029	2034	2039	2044	2049
2011	425	0.01170				·	·	
2012	430	0.05651						
2013	455	0.07411						
2014	490	0.01015						
2015	495	0.01005						
2016	500	0.04217						
2017	515	0.05943						
2018	544	0.06408						
2019	580	0.04102	724	889	1092	1340	1646	2020
	Desviación I	Estándar:	0.026668956					
			Intervalo de	Confiar	ıza			
	Zo =	1.8	-0.00697925			.	.	
			0.089028991					

Fuente: Autores

Se grafican los tres métodos, obteniendo los siguiente.

Figura 18 *Métodos de proyección*

Fuente: Autores

Método de proyección seleccionado. De acuerdo a las proyecciones realizadas y al comportamiento de los diferentes métodos, se ha seleccionado para este proyecto es el método aritmético, debido a varias razones técnicas y prácticas que lo hacen adecuado y confiable, como lo es la minimización de la incertidumbre, de igual forma, en contextos rurales como el de la vereda Morca, donde el crecimiento poblacional suele ser más moderado y menos influenciado por factores migratorios extremos, el método aritmético proporciona una aproximación realista y práctica. Este método es adecuado para áreas con crecimiento poblacional predecible y constante, esto último puede mostrarse en la gráfica de crecimiento poblacional donde el crecimiento de la misma tiende a ser más realista.

Caudales de descarga (cálculo de caudales)

Según las recomendaciones del RAS 2000 Titulo D se emplea el método racional para la determinación de los caudales de diseño, este método es adecuado para el cálculo de los caudales generados en superficies menores de 700Ha como el caso del centro poblado de Morcá. Este método establece que el caudal superficial producido por una precipitación es:

La cual depende del coeficiente de escorrentía, la intensidad promedio de la lluvia y el área de drenaje.

Para el nivel de complejidad de la vereda de Morca, del municipio de Sogamoso, es medio, por lo que se adopta un coeficiente de retorno de 0.85 de acuerdo a las especificaciones del RAS 2000 descritas en la Tabla D.3.1 Coeficiente de retorno de aguas residuales domésticas.

$$QD = \frac{Cr * P * D_{neta}}{86400}$$

Caudal para aguas residuales domesticas

$$QD = \frac{0.85 * 694 * 120^{L}/_{hab * d}}{86400}$$
$$QD = 0.81^{L}/_{S}$$

Aguas residuales industriales (QI)

De acuerdo al RAS 2000 título D, el nivel de complejidad del sistema se encuentra en un rango bajo, esto conforme a lo mencionado en la Tabla D.3.2 Contribución de aguas residuales industriales para industrias pequeñas. Por ende, tendrá una contribución industrial de 0,4 L/s*ha industrial.

$$QI = Contribución Industrial * Área$$

$$QI = 0.4 \frac{L}{_{S*Ha}} * 0$$

$$QI = 0$$

Caudal de aguas residuales comerciales (QC)

Según lo descrito en el RAS 2000, en el numeral 3.3.3.3. Caudal de aguas residuales comerciales, Cuando el área objeto existen normas mixtas tanto comerciales como residenciales se usa la contribución de caudal del 0,5 L/s*Ha comercial.

El polígono de estudio presenta áreas comerciales mixtas de 0 Ha.

$$QC = Contribución * Área$$

 $QC = 0.5 \frac{L}{s} * Ha * 0.Ha$
 $Qc = 0 \frac{L}{s}$

Caudal de aguas residuales institucionales (Qin)

Esto se hallaron multiplicando los aportes definidos anteriormente por el área que ocupan dentro sector analizado. De acuerdo con el RAS 2000, en la Tabla D. 1.1. Asignación del nivel de complejidad del sistema, el cual se definió como bajo, por lo que tiene una contribución según el literal 3.3.3.4. Caudal de Aguas Residuales Institucionales, donde estipula que los aportes institucionales en zonas residenciales se pueden estimar en 0.5 L/s*Ha Institucional.

$$Qin = Contribución * Área$$
 $Qin = 0.5 \frac{L}{s * Ha} * 0.094 Ha$
 $Qin = 0.047 L/s$

Caudal medio diario de aguas residuales

Se calculó multiplicando el área aferente del tramo por el aporte unitario ponderado, el cual hace referencia a la sumatoria de caudales en el área de estudio.

$$QMD = QD + QI + QC + Qin$$

$$QMD = 0.81 \frac{L}{S} + 0 \frac{L}{S} + 0 \frac{L}{S} + 0.047 \frac{L}{S}$$

$$QMD = 0.857 \frac{L}{S}$$

Factor de mayoración

El factor de mayoración del caudal máximo horario, se define para los niveles de complejidad del sistema como se describe en el RAS 2000 Titulo D. Según la Tabla D.3.4

Máximo factor de mayoración de acuerdo con la población servida, teniendo en cuenta que la población es <20.000, el factor de mayoración corresponde a 3,00.

Caudal máximo horario

Se calculó multiplicando el factor de mayoración por el Caudal Medio Diario.

$$QMHF = F * QMD$$

$$QMHF = 3 * 0.857 \frac{L}{s}$$

$$QMHF = 2.571 \frac{L}{s}$$

Caudales de infiltración

Se asumieron los aportes y con estos se calcularon los caudales, multiplicando por el área para cada tramo. El centro poblado de Morca, cuenta con un Nivel de Complejidad del Sistema bajo, lo que indica una infiltración de 0.1 L/s*Ha descrito en la Tabla D.3.3 Aportes por infiltración en redes de sistemas de recolección y evacuación de aguas residuales, RAS 2000 Titulo D.

Caudal de aguas residuales por conexiones erradas

De acuerdo con lo establecido en el RAS 2000, Titulo D, literal 3.3.3.5 Caudal de Aguas Residuales por Conexiones Erradas, el aporte máximo a un sistema de alcantarillado de aguas residuales existente o proyectado debe ser de 2,0 L/s*Ha.

Caudal de diseño

Según lo descrito en la resolución 0330 de 2017, en la sección 1, "Consideraciones Técnicas Generales de la Redes de Alcantarilla", Articulo 134. Literal 7, implanta para el caudal de diseños, para obtenerse es preciso sumar el caudal máximo horario, aportes por infiltración y conexiones erradas. Si este valor calculado es menor de 1.5 L/s, se debe tomar este último como caudal de diseño del tramo.

Pendiente

El valor corresponderá al porcentaje de inclinación que tiene el tramo evaluado, medido a partir de la longitud del tramo y las cotas de las tuberías a evaluar.

$$s = \frac{\textit{Cota clave superior} - \textit{Cota clave inferior}}{\textit{Longitud del Tramo}}$$

Caudal Sanitario Asignado por Tramos del Sistema

Tabla 8

Caudal por tramos del sistema

Cálculo de los caudales de diseño-sectores El Portillo y Centro Poblado

Pozo (De -:		Área 7 (ha)	Γributaria	Aporte me	edio diario l	Doméstico		Caudal Industrial		Caudal Comercia	Caudal Comercial		Caudal Institucional		Aporte unitario ponderado	Caudal medio diario de AR	Factor de Mayoración- Valor maximo 3	Caudal Máximo Horario	Infiltracio	ón	Conexi		Caudal de aguas negras
		Parcial	Total	% de Área	Densidad	Población	L/s.ha	% de Área	L/s.ha	% de Área	L/s.ha	% de Área	L/s.ha	TOTAL	L/s.ha	L/s	F (Flores)	L/s	L/s/ha	L/s	L/s/ha	L/s	L/s
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	•
4	5	0.5390	0.5390	100	44	24	0.0519	0	0	0	0	0	0	100	0.052	0.028	1.8	0.05	0.05	0.027	0.00	0.000	0.077
5	6	0.2790	0.8180	100	44	36	0.0519	0	0	0	0	0	0	100	0.052	0.042	1.8	0.08	0.05	0.041	0.00	0.000	0.117
5	7	0.2660	1.0840	100	44	48	0.0519	0	0	0	0	0	0	100	0.052	0.056	1.8	0.10	0.05	0.054	0.00	0.000	0.156
7	8	0.2650	1.3490	100	44	59	0.0519	0	0	0	0	0	0	100	0.052	0.070	1.8	0.13	0.05	0.067	0.00	0.000	0.194
1	9	0.1640	1.5130	100	44	67	0.0519	0	0	0	0	0	0	100	0.052	0.079	1.8	0.14	0.05	0.076	0.00	0.000	0.217
)	10	0.2240	1.7370	100	44	76	0.0519	0	0	0	0	0	0	100	0.052	0.090	1.8	0.16	0.05	0.087	0.00	0.000	0.249
0	11	0.1930	1.9300	100	44	85	0.0519	0	0	0	0	0	0	100	0.052	0.100	1.8	0.18	0.05	0.097	0.00	0.000	0.277
1	12	0.0900	2.0200	100	44	89	0.0519	0	0	0	0	0	0	100	0.052	0.105	1.8	0.19	0.05	0.101	0.00	0.000	0.290
2	13	0.1520	2.1720	100	44	96	0.0519	0	0	0	0	0	0	100	0.052	0.113	1.8	0.20	0.05	0.109	0.00	0.000	0.312
3	14	0.1110	2.2830	100	44	100	0.0519	0	0	0	0	0	0	100	0.052	0.119	1.8	0.21	0.05	0.114	0.00	0.000	0.328
8	39	0.2230	0.2230	100	44	10	0.0519	0	0	0	0	0	0	100	0.052	0.012	1.8	0.02	0.05	0.011	0.00	0.000	0.032
19	40	0.1480	0.3710	100	44	16	0.0519	0	0	0	0	0	0	100	0.052	0.008	1.8	0.01	0.05	0.019	0.00	0.000	0.032
10	41	0.2950	0.6660	0	44	29	0.0519	0	0	0	0	100	0.5	100	0.500	0.148	1.8	0.27	0.05	0.033	0.00	0.000	0.299
1	42	0.3330	0.9990	0	44	44	0.0519	0	0	0	0	100	0.5	100	0.500	0.167	1.8	0.30	0.05	0.050	0.00	0.000	0.350
12	73	0.1590	1.1580	70	44	51	0.0519	0	0	0	0	30	0.5	100	0.186	0.030	1.8	0.05	0.05	0.058	0.00	0.000	0.111
13	14	0.1400	1.2980	70	44	57	0.0519	0	0	0	0	30	0.5	100	0.186	0.026	1.8	0.05	0.05	0.065	0.00	0.000	0.112
4	15	0.1300	3.7110	100	44	63	0.0519	0	0	0	0	0	0	100	0.052	0.007	1.8	0.01	0.05	0.186	0.00	0.000	0.198
15	16	0.1690	3.8800	100	44	70	0.0519	0	0	0	0	100	0.5	200	0.552	0.093	1.8	0.17	0.05	0.194	0.00	0.000	0.362
6	17	0.1620	4.0420	100	44	77	0.0519	0	0	0	0	100	0.5	200	0.552	0.089	1.8	0.16	0.05	0.202	0.00	0.000	0.363
7	V-1	0.2540	4.2960	100	44	89	0.0519	0	0	0	0	30	0.5	130	0.202	0.051	1.8	0.09	0.05	0.215	0.00	0.000	0.307
18	19	0.2720	0.2720	100	44	12	0.0519	0	0	0	0	0	0	100	0.052	0.127	1.8	0.23	0.05	0.014	0.00	0.000	0.242
9	20	0.2480	0.5200	100	44	23	0.0519	0	0	0	0	0	0	100	0.052	0.131	1.8	0.24	0.05	0.026	0.00	0.000	0.263
20	21	0.3300	0.8500	100	44	37	0.0519	0	0	0	0	0	0	100	0.052	0.017	1.8	0.03	0.05	0.043	0.00	0.000	0.073
1	22	0.2360	1.0860	100	44	48	0.0519	0	0	0	0	0	0	100	0.052	0.024	1.8	0.04	0.05	0.054	0.00	0.000	0.097
!2	23	0.0560	1.1420	100	44	50	0.0519	0	0	0	0	0	0	100	0.052	0.011	1.8	0.02	0.05	0.057	0.00	0.000	0.076
7	48	0.0620	0.0620	100	44	3	0.0519	0	0	0	0	0	0	100	0.052	0.003	1.8	0.01	0.05	0.003	0.00	0.000	0.009
8	49	0.1630	0.2250	100	44	10	0.0519	0	0	0	0	0	0	100	0.052	0.012	1.8	0.02	0.05	0.003	0.00	0.000	0.032
9	49a	0.0720	0.2970	100	44	13	0.0519	0	0	0	0	0	0	100	0.052	0.015	1.8	0.03	0.05	0.015	0.00	0.000	0.043
9a	22	0.1040	0.4010	100	44	18	0.0519	0	0	0	0	0	0	100	0.052	0.021	1.8	0.04	0.05	0.020	0.00	0.000	0.058
)	23	0.0790	0.0790	100	44	3	0.0519	0	0	0	0	0	0	100	0.052	0.004	1.8	0.01	0.05	0.004	0.00	0.000	0.011
	2.5					-	0.0017		7			•											
3	24	0.0340	1.1760	100	103	4	0.1216	0	0	0	0	0	0	100	0.122	0.004	1.8	0.01	0.05	0.059	0.00	0.000	0.066
ı	24	0.0960	0.0960	100	103	10	0.1216	0	0	0	0	0	0	100	0.122	0.012	1.8	0.02	0.05	0.005	0.00	0.000	0.026

24	25	0.0600	0.0600	100	103	6	0.1216	0	0	0	0	0	0	100	0.122	0.007	1.8	0.01	0.05	0.003	0.00	0.000	0.016
53	25	0.1130	0.1130	85	103	12	0.1216	0	0	15	0.5	0	0	100	0.178	0.020	1.8	0.04	0.05	0.006	0.00	0.000	0.042
25	26	0.0770	0.1900	85	103	20	0.1216	0	0	15	0.5	0	0	100	0.178	0.034	1.8	0.06	0.05	0.010	0.00	0.000	0.070
55	56	0.0910	0.0910	80	103	9	0.1216	0	0	20	0.5	0	0	100	0.197	0.018	1.8	0.03	0.05	0.005	0.00	0.000	0.037
56	57	0.0840	0.1750	80	103	18	0.1216	0	0	20	0.5	0	0	100	0.197	0.035	1.8	0.06	0.05	0.009	0.00	0.000	0.071
57	58	0.0180	0.1930	100	103	20	0.1216				0.5				0.122	0.037	1.8	0.07	0.05	0.010	0.00	0.000	0.076
58	58a	0.0530	0.2460	100	103	25	0.1216	0	0	0	0.5	50	0.5	150	0.372	0.056	1.8	0.10	0.05	0.012	0.00	0.000	0.114
58a	26	0.0160	0.2620	100	103	27	0.1216				0.5				0.122	0.058	1.8	0.11	0.05	0.013	0.00	0.000	0.118
26	27	0.0280	0.0280	80	103	3	0.1216	0	0	20	0.5	0	0	100	0.197	0.006	1.8	0.01	0.05	0.001	0.00	0.000	0.011
27	V-2	0.1020	0.1300	80	103	13	0.1216	0	0	20	0.5	0	0	100	0.197	0.026	1.8	0.05	0.05	0.007	0.00	0.000	0.053
2,		0.1020	0.1300	00	100		0.1210	0	· ·	20	0.5			100	0.177	0.020	1.0	0.03	0.05	0.007	0.00	0.000	0.033
26	66	0.0140	0.0140	85	103	1	0.1216	0	0	15	0.5	0	0	100	0.178	0.063	1.8	0.11	0.05	0.001	0.00	0.000	0.114
66	67	0.0580	0.0720	85	103	7	0.1216	0	0	15	0.5	0	0	100	0.178	0.047	1.8	0.08	0.05	0.004	0.00	0.000	0.088
68	67	0.0870	0.0870	85	103	9	0.1216	0	0	15	0.5	0	0	100	0.178	0.016	1.8	0.03	0.05	0.004	0.00	0.000	0.032
67	67a	0.1070	0.1070	85	103	11	0.1216	0	0	15	0.5	0	0	100	0.178	0.019	1.8	0.03	0.05	0.005	0.00	0.000	0.040
67a	63	0.0310	0.1380	85	103	14	0.1216	0	0	15	0.5	0	0	100	0.178	0.006	1.8	0.01	0.05	0.007	0.00	0.000	0.017
63	64	0.2120	0.2120	100	103	22	0.1216	0	0	0	0	0	0	100	0.122	0.094	1.8	0.17	0.05	0.011	0.00	0.000	0.180
64	V-3	0.2120	0.2120	100	103	31	0.1216	0	0	0	0	0	0	100	0.122	0.058	1.8	0.17	0.05	0.011	0.00	0.000	0.119
04	• 5	0.0000	0.5000	100	100	J.	0.1210	0	· ·	0	0			100	0.122	0.050	1.0	0.10	0.05	0.015	0.00	0.000	0.117
62	63	0.1560	0.1560	100	103	16	0.1216	0	0	0	0	0	0	100	0.122	0.092	1.8	0.17	0.05	0.008	0.00	0.000	0.174
59	60	0.0770	0.0770	85	103	8	0.1216	0	0	15	0.5	0	0	100	0.178	0.014	1.8	0.02	0.05	0.004	0.00	0.000	0.029
60	61	0.4530	0.5300	85	103	55	0.1216	0	0	15	0.5	0	0	100	0.178	0.095	1.8	0.17	0.05	0.027	0.00	0.000	0.197
65	61	0.1390	0.6690	85	103	14	0.1216	0	0	15	0.5	0	0	100	0.178	0.119	1.8	0.21	0.05	0.033	0.00	0.000	0.248
61	62	0.0380	0.8630	85	103	18	0.1216	0	0	15	0.5	0	0	100	0.178	0.021	1.8	0.04	0.05	0.043	0.00	0.000	0.080
62	69	0.1180	0.9810	50	103	12	0.1216	0	0	0	0	50	0.5	100	0.311	0.037	1.8	0.07	0.05	0.049	0.00	0.000	0.115
69	70	0.1180	1.1060	50	103	25	0.1216	0	0	0	0	50	0.5	100	0.311	0.037	1.8	0.07	0.05	0.049	0.00	0.000	0.125
70	71	0.0690	1.1750	50	103	32	0.1216	0	0	0	0	50	0.5	100	0.311	0.021	1.8	0.04	0.05	0.059	0.00	0.000	0.097
71	71a	0.0640	1.2390	100	103	39	0.1216	0	0	0	0	0	0	100	0.122	0.008	1.8	0.01	0.05	0.062	0.00	0.000	0.076
71a	71b	0.0400	1.2790	100	103	43	0.1216	0	0	0	0	0	0	100	0.122	0.005	1.8	0.01	0.05	0.064	0.00	0.000	0.073
71b	V-4	0.0170	1.2960	100	103	45	0.1216	0	0	0	0	0	0	100	0.122	0.002	1.8	0.00	0.05	0.065	0.00	0.000	0.069
		_																					

Fuente: Autores

Según las recomendaciones del RAS 2000 Titulo D se emplea el método racional para la determinación de los caudales de diseño, este método es adecuado para el cálculo de los caudales generados en superficies menores de 700 Ha como el caso de la vereda Morcá y parte del sector el Portillo.

El cálculo de caudales, es permitente conocer en qué puntos las tuberías existentes no dan abasto en el sistema, esto debido a diferentes factores donde el crecimiento poblacional pudo causar que las cargas hidráulicas actuales y futuras no soporten estas.

Por otro lado, los datos presentados en la tabla 8, que incluyen el caudal de descarga por área aferente, sugieren que algunas de las deficiencias del sistema pueden atribuirse a factores como los diámetros de las tuberías, la pendiente y la capacidad del sistema. El crecimiento poblacional ha provocado que dichos caudales y velocidad del agua a través de las tuberías o canales no sea óptima, debido a las limitaciones impuestas por estos parámetros.

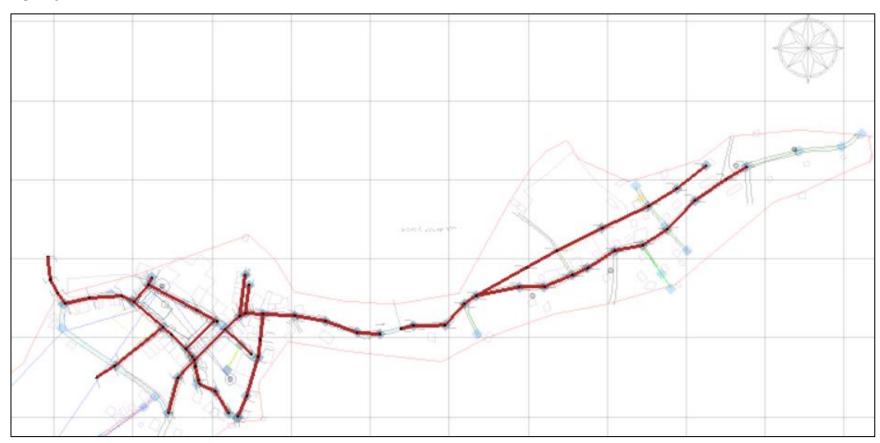
De igual forma, nos permite evaluar en el simulador y determinar la capacidad de manejar tanto demandas actuales como futuras, especialmente es determinante en aquellas áreas envejecidas que requieren rehabilitación, ya que muestra una mejor perspectiva de que tramos es pertinente realizarles ampliación

Modelación del sistema de alcantarillado actual

La modelación hidráulica de la red de alcantarillado combinado existente en la zona de estudio en la vereda de Morca y el sector portillo, en los cuales se tendrá en cuenta un tiempo de concentración de 15 minutos para periodos de retorno de 2, 5, y 10 años de acuerdo a las curvas IDF, con el fin de determinar cuál de estas configuraciones presenta un escenario de simulación más crítico, en el cual, se evidencien los diferentes problemas existentes en la red de alcantarillado combinado.

La modelación del sistema de alcantarillado en la vereda Morca se realizó utilizando el software SewerCAD de Bentley Systems, dicha herramienta es usada el diseño y análisis de redes de alcantarillado.

Para la generación de la modelación se realizó la recopilación de información y preparación de datos, tanto topográficos como hidrológicos y de la estructura existente, de esta última fue importante conocer coordenadas de pozos, ubicación de pozos, cota batea, cota clave, tubería, material de dicha tubería, diámetros, pendientes, velocidades, población, áreas, caudal de descarga, catastro existente, entre otros.


Posteriormente, se realizó el traslado de la información para la configuración del proyecto en SewerCAD, de tal forma que se estructure los parámetros iniciales del sistema como lo son las unidades de medida, características de terreno, de tal forma, que se definan los nodos, tramos de tubería con su respectivo diámetro, pozos de inspección y otros elementos del sistema asociándolas con sus respectivas características físicas y operativas

Seguidamente, se asignaron caudales a los nodos del sistema basándose en la recolección de la información preliminar, donde se aplicó el método aritmético para proyección de población. Además, se estableció las condiciones de contorno, incluyendo las descargas y condiciones de entradas y salidas

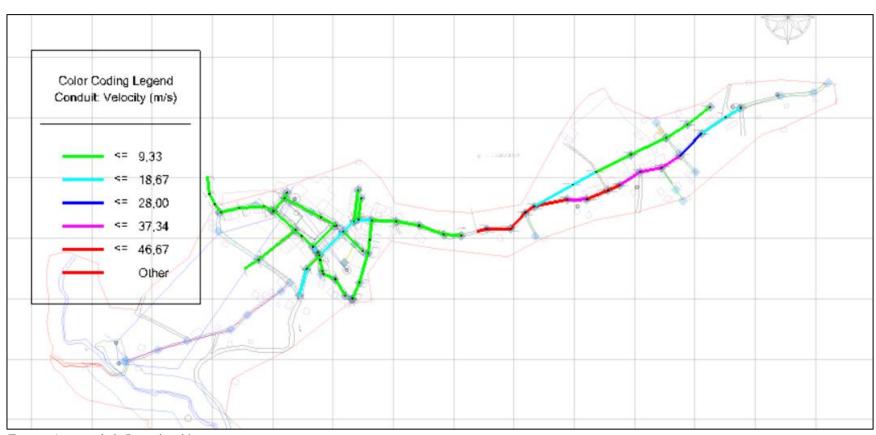
Finalmente, con los elementos y parámetros definidos, se corre la simulación del sistema actual de la red de alcantarillado de la vereda Morca en SewerCAD, de tal forma que se generen, perfiles de flujo, velocidades, niveles de llenado en cada tramo de tubería bajo diferentes escenarios, para este caso se crearon 3, el primero a un periodo de retorno de 2 años, el segundo escenario con un periodo de retorno de 5 años y el tercero a un periodo de retorno de 10 años. Esto con el fin, de identificar los problemas de la red, como en los lugares

puntuales donde se presentan sobrecargas, puntos de inundación y posibles tramos subdimensionados.

Figura 19 *Topología de Modelo*

Resultados de modelación del catastro actual en diferentes tiempos de retorno

Escenario 1 -Periodo de retorno 2 años

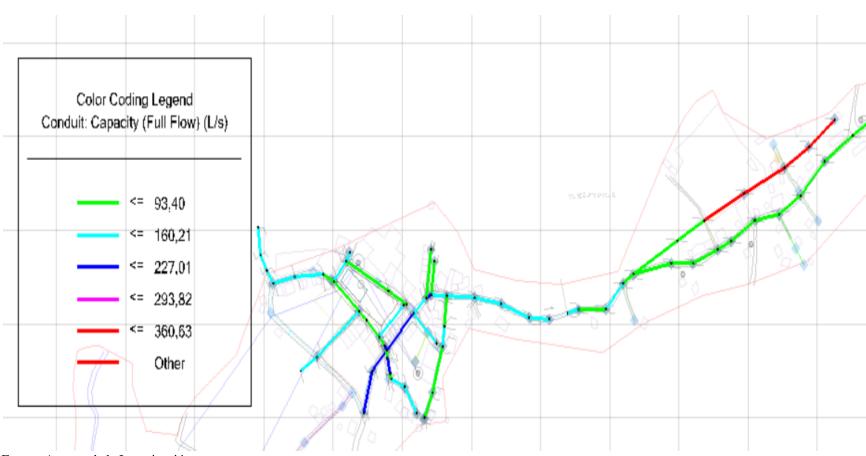

En el escenario 1, los colectores que conforman la red de alcantarillado combinado en el área de estudio se modelan para un tiempo de retorno de 2 años y tiempo de concentración de 15 minutos, de acuerdo a las curvas IDF establecidas para el Municipio. A continuación, se presentan los resultados generales de la simulación hidráulica del alcantarillado combinado existente.

Velocidad. La velocidad en los tramos de alcantarillado para un evento critico de simulación, presenta valores mínimos 0.87 m/s a 46.67 m/s como velocidad máxima, debido a las pendientes de la tubería y caudal transportado, en este sentido se presenta la siguiente situación donde se tienen valores que sobrepasan la norma ya que la norma exige que para diámetros menores a 450 mm las velocidades que se permiten es de 0.75 m/s a 5m/s.

Lo cual afecta dentro del sistema como se puede observar se podría presentar desbordamiento dentro del sistema de alcantarillado, pues las redes existentes no tienen la capacidad de soportar estas velocidades tan altas, por lo que se presentaría daños dentro de estas estructuras en los colapsos, por lo que se vería afectado el suelo principalmente y la comunidad por riesgos como inundaciones o erosiones al suelo.

En la siguiente imagen se puede observar a lo largo del sistema de alcantarillado las velocidades presentadas en las modelaciones durante los primeros 15 minutos.

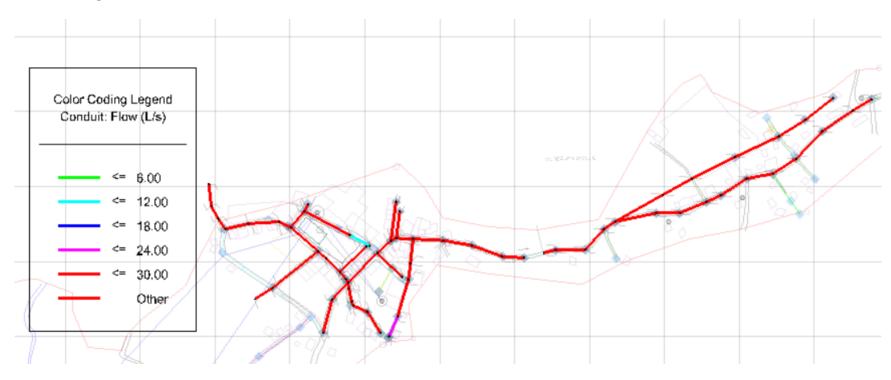
Figura 20Velocidad escenario 1



Capacidad hidráulica a tubo lleno. Para el análisis de capacidad hidráulica se planteó la relación q/Q en porcentaje, que representa la relación de simulación y el caudal a tubo lleno, dentro de los tramos de análisis supera la capacidad hidráulica máxima en el tiempo de concentración bajo condiciones críticas de simulación, considerando que el sistema funciona combinado.

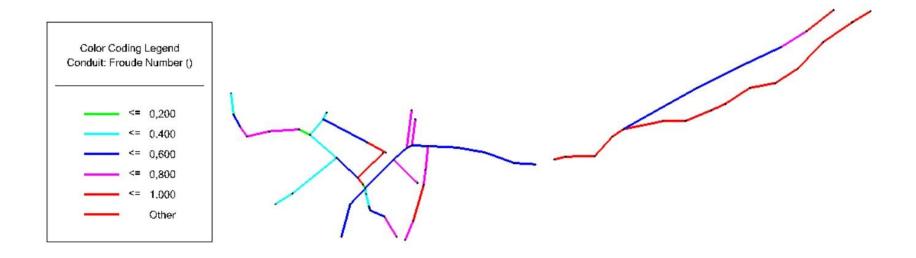
De acuerdo a esto según la norma RAS 2017, se especifica dentro del artículo 151, que la relación máxima entre profundidad y diámetro de la tubería no debe superar un valor máximo del 93%, por lo que observamos colectores, que sobrepasan este valor, ocurriendo o generando situaciones de desbordamientos, provocando inundaciones, daños a la infraestructura, y posibles riesgos para la salud pública.

Como se puede observar dentro del sistema de alcantarillado existen tramos que no cumplen la normatividad vigente, para un periodo crítico de tormenta.


Figura 21Capacidad hidráulica escenario 1

Caudal transportado. A continuación, se presenta la tabla resumen en donde se evidencia el caudal transportado por tramos del sistema de colectores de alcantarillado combinado, además de las variables hidráulicas anteriormente mencionadas.

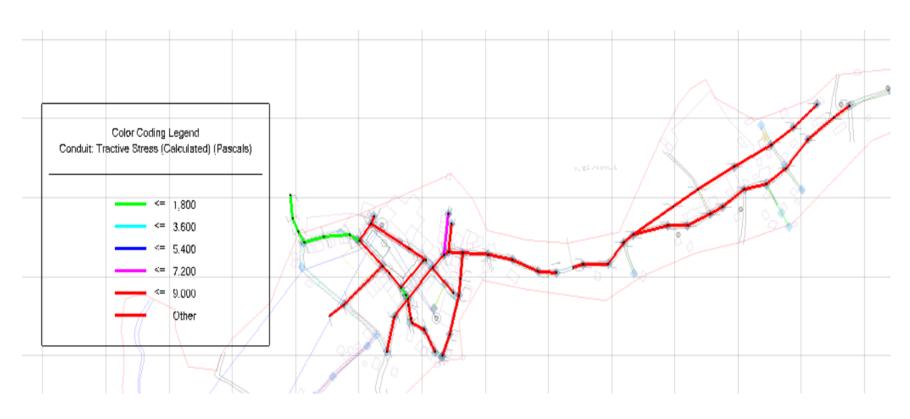
Este caudal presentado, es durante el tiempo de concentración de 15 minutos, por lo que se presentan valores de caudal de aproximadamente desde 8.48 l/s en adelante, todo esto varía de acuerdo a los aportes.


Figura 22Caudal transportado escenario 1

Numero de froude. A continuación, se presenta el cálculo del Número de Froude, necesario para clasificar el régimen de flujo en subcrítico, crítico y supercrítico en cada uno de los colectores que conforman la red de alcantarillado combinado en el área de estudio, se puede evidenciar que en el periodo de análisis el régimen de flujo en la red de drenaje corresponde a subcrítico y supercrítico.

Dentro de este parámetro generalmente se busca mantener el número de froude por debajo de 1 para evitar condiciones de flujo rápido los cuales pueden causar erosión o daños dentro de la estructura del sistema de alcantarillado.

Figura 23 *Numero de froude escenario 1*



Fuerza tractiva. A continuación, se presenta el cálculo del parámetro de fuerza tractiva, necesario para determinar el criterio de autolimpieza en las tuberías a partir del esfuerzo cortante mínimo que permite esta condición, se puede evidenciar que en el periodo de análisis el criterio de autolimpieza los tramos no cumplen este criterio.

De acuerdo a los sistemas de alcantarillados combinados, el valor de la fuerza cortante no debe sobrepasar los 2 Pa, por lo que, en la siguiente figura, se presentan valores que sobrepasan estos valores y adicionalmente de esto son muy altos, por lo que significa que la velocidad del flujo como también se presentaba anteriormente, son muy altas como para arrastrar solidos o sedimentos presentes dentro del sistema.

Esto puede provocar la erosión de las paredes de los conductos dentro del sistema y el desgaste de la tubería. Adicionalmente como se viene planteando puede aumentar los riesgos de inundaciones provocados por obstrucciones o bloqueos dentro del sistema.

Figura 24Fuerza Tractiva escenario 1

Fuente: Autores

Teniendo en cuenta los parámetros analizados en el escenario 1, se consolida un análisis de forma general donde se presenta el no cumplimiento de los parámetros hidráulicos mínimos partir de los 60 tramos analizados en dicho escenario.

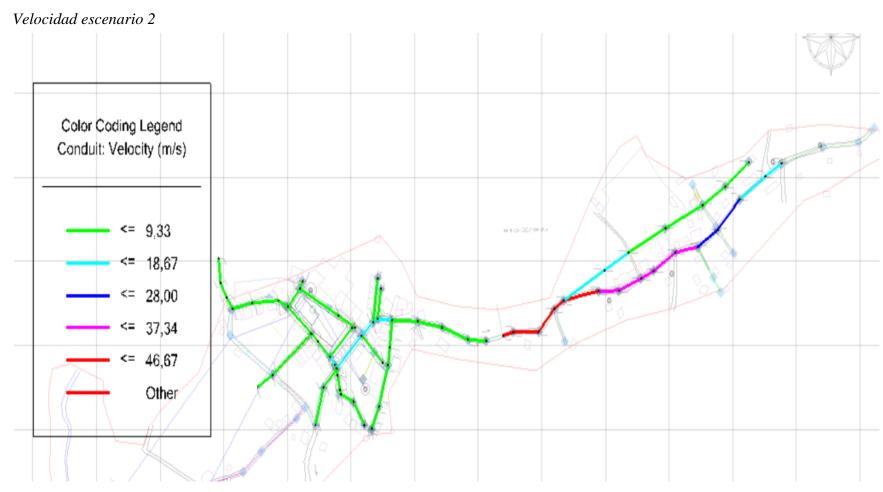
Tabla 9Cálculos hidráulicos de la modelación en el escenario 1

Label	Flow (Middle) (L/s)	Velocity (m/s)	Flow / Capacity (Design) (%)	Froude Number	Tractive Stress (Calculated) (Pascals)
CO-53	8,40	0,87	11,0	0,000	13,997
CO-36	20,32	1,55	26,6	0,000	20,387
CO-32	24,53	1,48	92,3	0,661	9,281
CO-54	25,70	1,56	36,9	0,611	19,293
CO-52	26,96	1,92	24,8	0,611	36,243
CO-41	28,36	2,01	18,1	0,959	73,252
CO-35	28,77	1,43	105,8	0,780	6,360
CO-40	37,18	2,54	24,4	0,852	78,271
CO-16	39,80	2,38	38,0	0,806	44,243
CO-63	43,74	1,12	42,4	0,806	44,816
CO-42	54,42	3,15	40,0	0,852	76,009
CO-43	59,65	1,47	124,6	0,745	11,557
CO-26	73,37	2,72	20,3	0,745	53,815
CO-37	74,08	2,27	89,9	0,745	36,827
CO-44	76,10	4,02	45,5	0,745	121,159
CO-56	76,91	1,90	135,0	0,673	14,613
CO-57	77,57	1,92	196,9	0,619	0,000
CO-45	80,76	3,75	92,8	0,687	37,191
CO-17	90,13	2,65	95,3	0,578	48,871
CO-38	97,89	2,98	91,1	0,468	62,749
CO-58	113,24	3,64	85,4	0,438	0,000
CO-27	122,05	3,09	35,0	0,437	62,815
CO-48	125,01	3,09	186,3	0,420	20,265
CO-39	132,06	3,26	143,0	0,382	38,360
CO-49	144,36	3,57	345,4	0,361	7,862
CO-59	150,73	3,86	117,1	0,453	0,000
CO-60	171,55	4,24	138,7	0,369	0,000
CO-18	172,20	4,25	159,6	0,456	52,377
CO-61	180,05	4,45	164,0	0,342	0,000

CO-62	185,23	4,58	129,2	0,487	0,000
CO-1	185,62	11,23	371,8	0,494	27,073
CO-55	198,74	4,91	199,9	0,498	44,502
CO-28	219,63	3,29	70,5	0,418	65,034
CO-29	219,68	3,26	71,3	0,262	63,814
CO-50	277,38	6,85	205,6	0,538	81,880
CO-2	277,58	16,80	553,5	0,534	27,319
CO-19	280,88	6,94	262,3	0,518	51,591
CO-46	328,40	8,11	190,5	0,541	0,000
CO-30	329,49	12,66	372,2	0,428	31,794
CO-47	333,10	12,80	378,9	0,501	0,000
CO-51	343,29	8,48	282,3	0,364	66,507
CO-24	377,75	9,33	230,0	0,436	42,031
CO-4	381,13	23,07	940,1	0,240	17,849
CO-31	381,95	14,68	544,8	0,507	19,935
CO-25	387,12	9,56	193,8	0,239	62,129
CO-5	468,36	28,35	933,2	0,434	27,350
CO-34	477,60	11,80	407,8	0,910	61,721
CO-33	518,14	12,80	288,0	0,918	50,449
CO-6	522,47	31,62	1.027,5	1,981	28,079
CO-22	555,30	13,72	380,4	1,912	33,201
CO-7	596,18	36,08	1.173,7	1,910	28,024
CO-10	600,01	36,31	1.385,0	1,912	20,390
CO-23	608,80	15,04	325,3	1,920	54,515
CO-9	622,27	37,66	1.599,9	2,001	16,427
CO-11	636,85	38,55	1.300,3	1,969	26,049
CO-8	659,79	39,93	1.322,1	1,948	27,032
CO-12	1.105,13	42,46	1.233,0	2,133	32,577
CO-64	1.144,47	43,98	1.166,8	2,120	39,017
CO-13	1.160,86	44,61	1.220,9	2,270	36,666
CO-14	1.214,55	46,67	1.704,9	2,134	20,572
		•			

Escenario 2-Periodo de retorno de 5 años

En el escenario 2, los colectores que conforman la red de alcantarillado combinado en el área de estudio se modelan para un tiempo de retorno de 5 años y tiempo de concentración de 15 minutos, de acuerdo a las curvas IDF establecidas para el área de estudio.

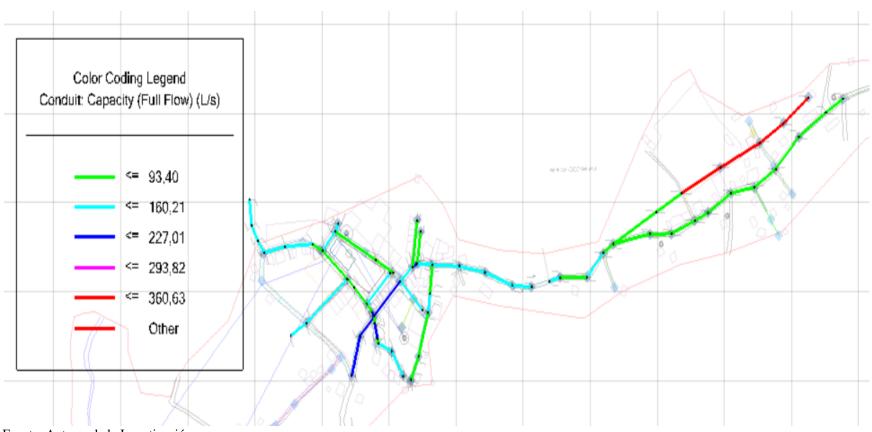

A continuación, se presentan los resultados generales de la simulación hidráulica del alcantarillado combinado existente.

Velocidad. La velocidad en los tramos de alcantarillado para un evento critico de simulación, presenta valores mínimos 0.80 m/s a 43.98 m/s como velocidad máxima, debido a las pendientes de la tubería y caudal transportado, en este sentido se presenta la siguiente situación donde se tienen valores que sobrepasan la norma ya que la norma exige que para diámetros menores a 450 mm las velocidades que se permiten es de 0.75 m/s a 5m/s.

Lo cual afecta dentro del sistema como se puede observar se podría presentar desbordamiento dentro del sistema de alcantarillado, pues las redes existentes no tienen la capacidad de soportar estas velocidades tan altas, por lo que se presentaría daños dentro de estas estructuras en los colapsos, por lo que se vería afectado el suelo principalmente y la comunidad por riesgos como inundaciones o erosiones al suelo.

En la siguiente imagen se puede observar a lo largo del sistema de alcantarillado las velocidades presentadas en las modelaciones durante los primeros 15 minutos.

Figura 25

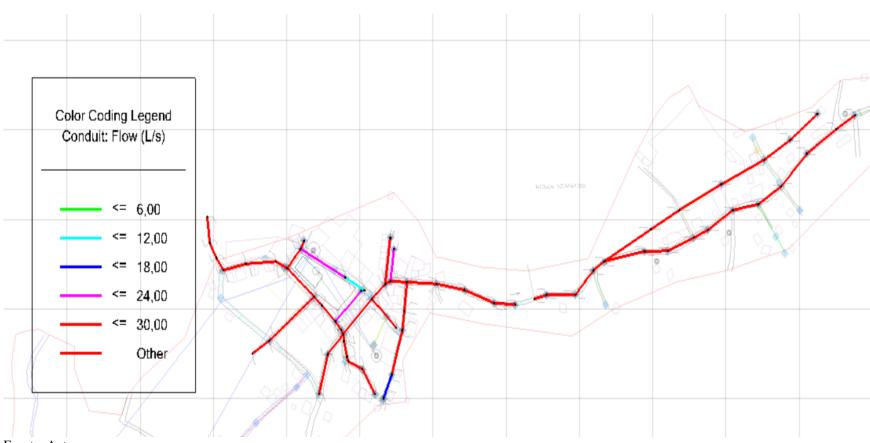


Capacidad hidráulica a tubo lleno. Para el análisis de capacidad hidráulica se planteó la relación q/Q en porcentaje, que representa la relación de simulación y el caudal a tubo lleno, dentro de los tramos de análisis supera la capacidad hidráulica máxima en el tiempo de concentración bajo condiciones críticas de simulación, considerando que el sistema funciona combinado.

De acuerdo a esto según la norma RAS 2017, se especifica dentro del artículo 151, que la relación máxima entre profundidad y diámetro de la tubería no debe superar un valor máximo del 93%, por lo que observamos colectores, que sobrepasan este valor, ocurriendo o generando situaciones de desbordamientos, provocando inundaciones, daños a la infraestructura, y posibles riesgos para la salud pública.

Como se puede observar dentro del sistema de alcantarillado existen tramos que no cumplen la normatividad vigente, para un periodo crítico de tormenta.

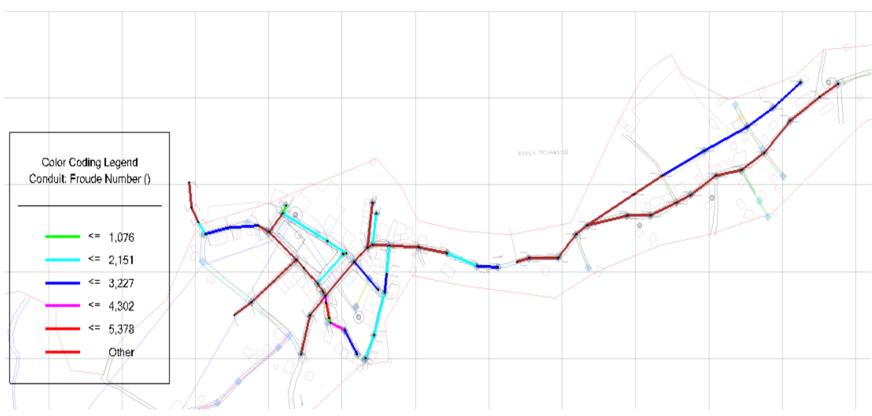
Figura 26Capacidad hidráulica escenario 2



Fuente: Autores de la Investigación

Caudal transportado. A continuación, se presenta la tabla resumen en donde se evidencia el caudal transportado por tramos del sistema de colectores de alcantarillado combinado, además de las variables hidráulicas anteriormente mencionadas.

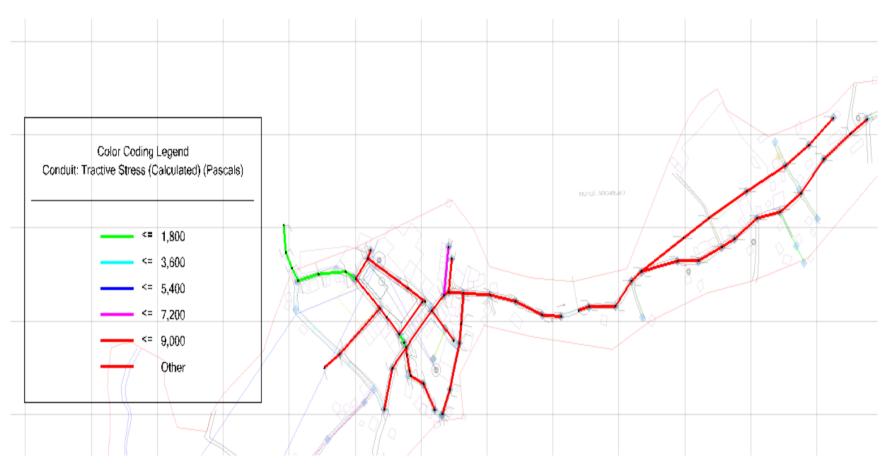
Este caudal presentado, es durante el tiempo de concentración de 15 minutos, por lo que se presentan valores de caudal de aproximadamente desde 7.42 l/s en adelante, todo esto varía de acuerdo a los aportes.


Figura 27 Caudal transportado

Numero de froude. A continuación, se presenta el cálculo del Número de Froude, necesario para clasificar el régimen de flujo en subcrítico, crítico y supercrítico en cada uno de los colectores que conforman la red de alcantarillado combinado en el área de estudio, se puede evidenciar que en el periodo de análisis el régimen de flujo en la red de drenaje corresponde a subcrítico y supercrítico.

Dentro de este parámetro generalmente se busca mantener el número de froude por debajo de 1 para evitar condiciones de flujo rápido los cuales pueden causar erosión o daños dentro de la estructura del sistema de alcantarillado.

Figura 28 *Numero de Froude escenario 2*



Fuerza tractiva. A continuación, se presenta el cálculo del parámetro de fuerza tractiva, necesario para determinar el criterio de autolimpieza en las tuberías a partir del esfuerzo cortante mínimo que permite esta condición, se puede evidenciar que en el periodo de análisis el criterio de autolimpieza los tramos no cumplen este criterio.

De acuerdo a los sistemas de alcantarillados combinados, el valor de la fuerza cortante no debe sobrepasar los 2 Pa, por lo que, en la siguiente figura, se presentan valores que sobrepasan estos valores y adicionalmente de esto son muy altos, por lo que significa que la velocidad del flujo como también se presentaba anteriormente, son muy altas como para arrastrar solidos o sedimentos presentes dentro del sistema.

Esto puede provocar la erosión de las paredes de los conductos dentro del sistema y el desgaste de la tubería. Adicionalmente como se viene planteando puede aumentar los riesgos de inundaciones provocados por obstrucciones o bloqueos dentro del sistema

Figura 29Fuerza tractiva escenario 2

Teniendo en cuenta los parámetros analizados en el escenario 1, se consolida un análisis de forma general donde se presenta el no cumplimiento de los parámetros hidráulicos mínimos partir de los 60 tramos analizados en dicho escenario.

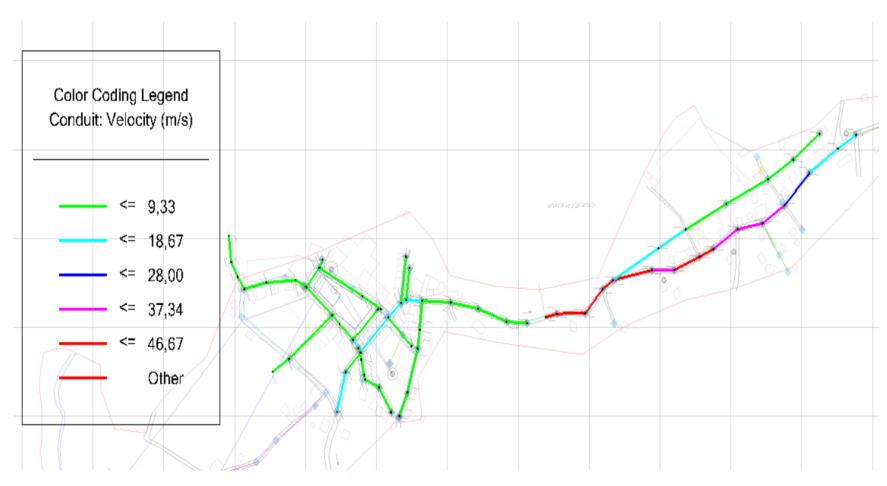
Tabla 10Resultado parámetros hidráulicos escenario 2

Label	Flow (Middle) (L/s)	Velocity (m/s)	Flow / Capacity (Design) (%)	Froude Number	Tractive Stress (Calculated) (Pascals)
CO-53	7,42	0,80	9,7	1,163	13,196
CO-41	25,04	1,81	15,9	2,217	69,588
CO-26	64,77	2,62	18,0	3,051	51,053
CO-40	32,82	2,28	21,5	2,796	74,316
CO-52	23,80	1,73	21,9	1,940	34,407
CO-36	17,94	1,49	23,4	2,005	19,413
CO-27	107,74	2,99	30,9	2,976	59,744
CO-54	22,71	1,50	32,6	1,840	18,350
CO-16	35,16	2,30	33,6	2,813	42,132
CO-42	48,04	3,04	35,3	3,658	72,212
CO-63	38,64	1,09	37,4	0,779	42,596
CO-44	67,20	3,89	40,2	4,496	115,299
CO-28	193,91	3,19	62,2	2,472	62,445
CO-29	193,96	3,16	63,0	2,439	61,320
CO-58	99,19	3,58	74,8	3,205	0,000
CO-37	65,40	2,23	79,3	1,912	35,699
CO-38	86,41	2,92	80,4	2,489	60,958
CO-32	21,68	1,74	81,6	1,818	9,038
CO-45	71,33	3,69	82,0	3,475	36,240
CO-17	79,62	2,58	84,2	2,122	47,852
CO-35	26,03	1,29	95,8	(N/A)	6,362
CO-59	132,53	3,68	103,0	2,558	0,000
CO-43	52,71	1,40	110,1	0,879	12,428
CO-62	168,71	4,17	117,7	(N/A)	0,000
CO-60	150,71	3,79	121,8	1,891	0,000
CO-39	116,57	2,89	126,2	1,098	42,343
CO-56	76,06	1,88	133,5	(N/A)	14,613
CO-18	152,08	3,76	141,0	(N/A)	52,377
CO-61	160,34	3,96	146,0	(N/A)	0,000

CO-46	289,97	7,16	168,2	(N/A)	0,000
CO-57	67,27	1,66	170,7	(N/A)	0,000
CO-25	341,81	8,44	171,1	(N/A)	62,129
CO-48	117,70	2,91	175,4	(N/A)	20,265
CO-55	175,56	4,34	176,6	(N/A)	44,502
CO-50	260,95	6,45	193,5	(N/A)	81,880
CO-24	333,54	8,24	203,1	(N/A)	42,031
CO-19	248,01	6,13	231,7	(N/A)	51,591
CO-33	457,47	11,30	254,2	(N/A)	50,449
CO-51	319,26	7,89	262,6	(N/A)	66,507
CO-23	537,57	13,28	287,3	(N/A)	54,515
CO-49	136,35	3,37	326,2	(N/A)	7,862
CO-30	290,92	11,18	328,6	(N/A)	31,794
CO-1	164,79	9,97	330,1	(N/A)	27,073
CO-47	294,12	11,30	334,6	(N/A)	0,000
CO-22	490,33	12,11	335,9	(N/A)	33,201
CO-34	421,67	10,42	360,1	(N/A)	61,721
CO-31	337,23	12,96	481,0	(N/A)	19,935
CO-2	245,97	14,89	490,5	(N/A)	27,319
CO-5	416,26	25,19	829,4	(N/A)	27,350
CO-4	339,25	20,53	836,8	(N/A)	17,849
CO-6	464,02	28,08	912,6	(N/A)	28,079
CO-7	529,09	32,02	1.041,6	(N/A)	28,024
CO-13	1.093,61	42,02	1.150,1	(N/A)	36,666
CO-12	1.044,40	40,13	1.165,2	(N/A)	32,577
CO-64	1.144,47	43,98	1.166,8	(N/A)	39,017
CO-8	585,24	35,42	1.172,7	(N/A)	27,032
CO-11	632,57	38,29	1.291,6	(N/A)	26,049
CO-10	600,01	36,31	1.385,0	(N/A)	20,390
CO-9	611,39	37,00	1.571,9	(N/A)	16,427
CO-14	1.141,04	43,84	1.601,8	(N/A)	20,572

Escenario 3 periodo de retorno 10 años

En el escenario 3, los colectores que conforman la red de alcantarillado combinado en el área de estudio se modelan para un tiempo de retorno de 10 años y tiempo de concentración de 15 minutos, de acuerdo a las curvas IDF establecidas para el Municipio. A

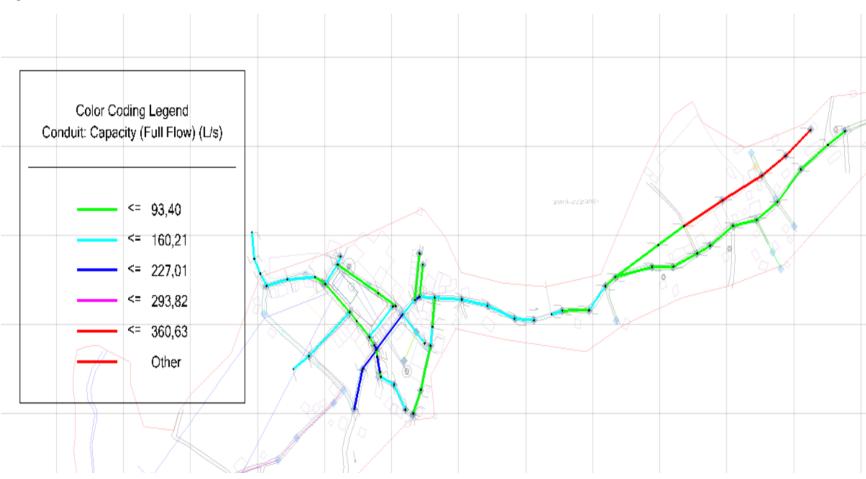

continuación, se presentan los resultados generales de la simulación hidráulica del alcantarillado combinado existente.

Velocidad. La velocidad en los tramos de alcantarillado para un evento critico de simulación, presenta valores mínimos 0.87 m/s a 46.67 m/s como velocidad máxima, debido a las pendientes de la tubería y caudal transportado, en este sentido se presenta la siguiente situación donde se tienen valores que sobrepasan la norma ya que la norma exige que para diámetros menores a 450 mm las velocidades que se permiten es de 0.75 m/s a 5m/s.

Lo cual afecta dentro del sistema como se puede observar se podría presentar desbordamiento dentro del sistema de alcantarillado, pues las redes existentes no tienen la capacidad de soportar estas velocidades tan altas, por lo que se presentaría daños dentro de estas estructuras en los colapsos, por lo que se vería afectado el suelo principalmente y la comunidad por riesgos como inundaciones o erosiones al suelo.

En la siguiente imagen se puede observar a lo largo del sistema de alcantarillado las velocidades presentadas en las modelaciones durante los primeros 15 minutos.

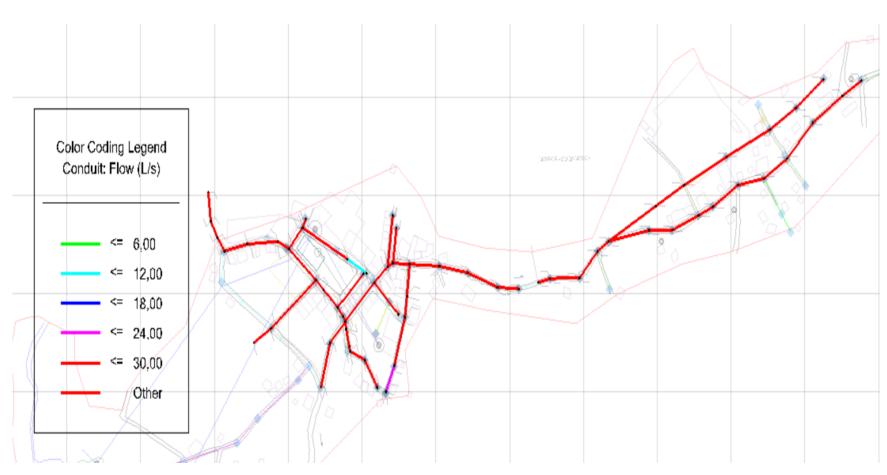
Figura 30 *Velocidad escenario 3*



Capacidad hidráulica. Para el análisis de capacidad hidráulica se planteó la relación q/Q en porcentaje, que representa la relación de simulación y el caudal a tubo lleno, dentro de los tramos de análisis supera la capacidad hidráulica máxima en el tiempo de concentración bajo condiciones críticas de simulación, considerando que el sistema funciona combinado.

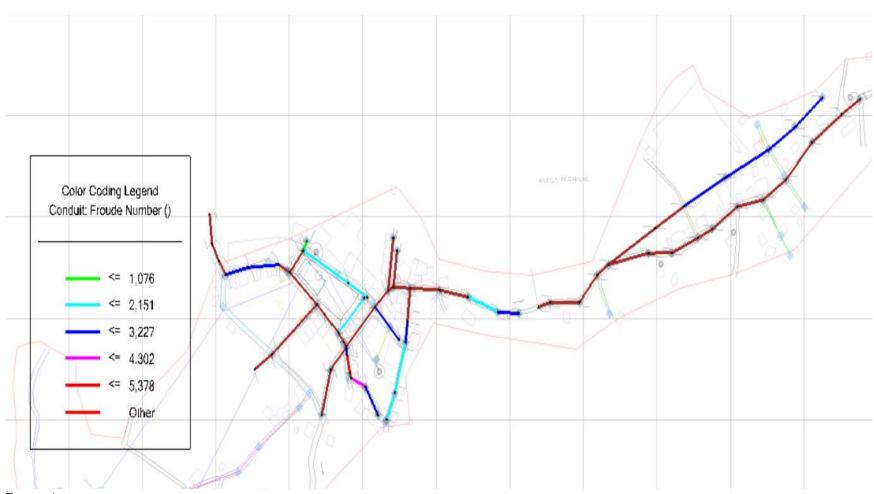
De acuerdo a esto según la norma RAS 2017, se especifica dentro del artículo 151, que la relación máxima entre profundidad y diámetro de la tubería no debe superar un valor máximo del 93%, por lo que observamos colectores, que sobrepasan este valor, ocurriendo o generando situaciones de desbordamientos, provocando inundaciones, daños a la infraestructura, y posibles riesgos para la salud pública.

Como se puede observar dentro del sistema de alcantarillado existen tramos que no cumplen la normatividad vigente, para un periodo crítico de tormenta.


Figura 31Capacidad hidráulica escenario 3

Caudal transportado. A continuación, se presenta la tabla resumen en donde se evidencia el caudal transportado por tramos del sistema de colectores de alcantarillado combinado, además de las variables hidráulicas anteriormente mencionadas.

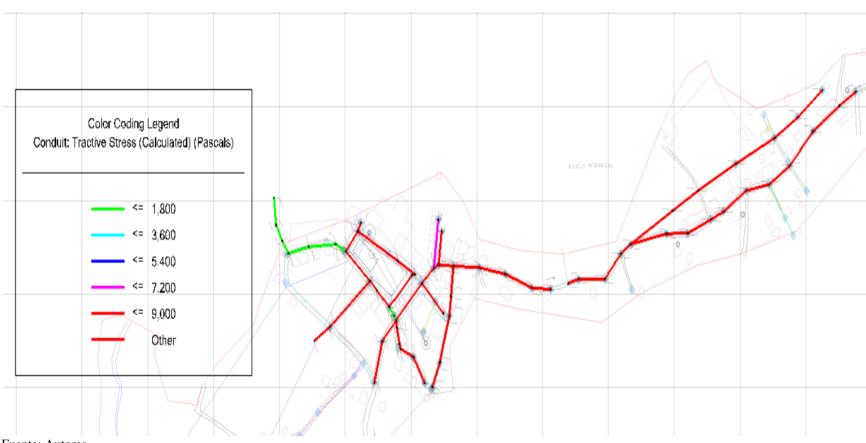
Este caudal presentado, es durante el tiempo de concentración de 15 minutos, por lo que se presentan valores de caudal de aproximadamente desde 7.42 l/s en adelante, todo esto varía de acuerdo a los aportes


Figura 32Caudal transportado escenario 3

Numero de froude. A continuación, se presenta el cálculo del Número de Froude, necesario para clasificar el régimen de flujo en subcrítico, crítico y supercrítico en cada uno de los colectores que conforman la red de alcantarillado combinado en el área de estudio, se puede evidenciar que en el periodo de análisis el régimen de flujo en la red de drenaje corresponde a subcrítico y supercrítico.

Dentro de este parámetro generalmente se busca mantener el número de froude por debajo de 1 para evitar condiciones de flujo rápido los cuales pueden causar erosión o daños dentro de la estructura del sistema de alcantarillado.

Figura 33 *Numero de Froude escenario 3*



Fuerza tractiva. A continuación, se presenta el cálculo del parámetro de fuerza tractiva, necesario para determinar el criterio de autolimpieza en las tuberías a partir del esfuerzo cortante mínimo que permite esta condición, se puede evidenciar que en el periodo de análisis el criterio de autolimpieza los tramos no cumplen este criterio.

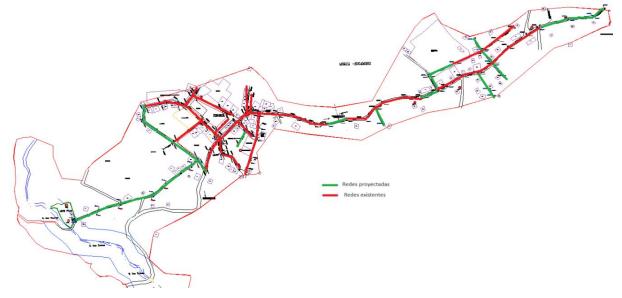
De acuerdo a los sistemas de alcantarillados combinados, el valor de la fuerza cortante no debe sobrepasar los 2 Pa, por lo que, en la siguiente figura, se presentan valores que sobrepasan estos valores y adicionalmente de esto son muy altos, por lo que significa que la velocidad del flujo como también se presentaba anteriormente, son muy altas como para arrastrar solidos o sedimentos presentes dentro del sistema.

Esto puede provocar la erosión de las paredes de los conductos dentro del sistema y el desgaste de la tubería. Adicionalmente como se viene planteando puede aumentar los riesgos de inundaciones provocados por obstrucciones o bloqueos dentro del sistema.

Figura 34 Fuerza tractiva escenario 3

Tabla 11Resultados de los parámetros hidráulicos escenario 3

	Elor		Flow /	,	Tractive
Labal	Flow	Velocity	Capacity	Froude	Stress
Label	(Middle)	(m/s)	(Design)	Number	(Calculated)
	(L/s)		(%)		(Pascals)
CO-14	1.214,55	46,67	1.704,9	(N/A)	20,572
CO-13	1.160,86	44,61	1.220,9	(N/A)	36,666
CO-64	1.144,47	43,98	1.166,8	(N/A)	39,017
CO-12	1.105,13	42,46	1.233,0	(N/A)	32,577
CO-8	659,79	39,93	1.322,1	(N/A)	27,032
CO-11	636,85	38,55	1.300,3	(N/A)	26,049
CO-9	622,27	37,66	1.599,9	(N/A)	16,427
CO-10	600,01	36,31	1.385,0	(N/A)	20,390
CO-7	596,18	36,08	1.173,7	(N/A)	28,024
CO-6	522,47	31,62	1.027,5	(N/A)	28,079
CO-5	468,36	28,35	933,2	(N/A)	27,350
CO-4	381,13	23,07	940,1	(N/A)	17,849
CO-2	277,58	16,80	553,5	(N/A)	27,319
CO-23	608,80	15,04	325,3	(N/A)	54,515
CO-31	381,95	14,68	544,8	(N/A)	19,935
CO-22	555,30	13,72	380,4	(N/A)	33,201
CO-33	518,14	12,80	288,0	(N/A)	50,449
CO-47	333,10	12,80	378,9	(N/A)	0,000
CO-30	329,49	12,66	372,2	(N/A)	31,794
CO-34	477,60	11,80	407,8	(N/A)	61,721
CO-1	185,62	11,23	371,8	(N/A)	27,073
CO-25	387,12	9,56	193,8	(N/A)	62,129
CO-24	377,75	9,33	230,0	(N/A)	42,031
CO-51	343,29	8,48	282,3	(N/A)	66,507
CO-46	328,40	8,11	190,5	(N/A)	0,000
CO-19	280,88	6,94	262,3	(N/A)	51,591
CO-50	277,38	6,85	205,6	(N/A)	81,880
CO-55	198,74	4,91	199,9	(N/A)	44,502
CO-62	185,23	4,58	129,2	(N/A)	0,000
CO-61	180,05	4,45	164,0	(N/A)	0,000
CO-18	172,20	4,25	159,6	(N/A)	52,377
CO-60	171,55	4,24	138,7	(N/A)	0,000
CO-44	76,10	4,02	45,5	4,440	121,159
CO-59	150,73	3,86	117,1	2,169	0,000


CO-45	80,76	3,75	92,8	3,199	37,191
CO-58	113,24	3,64	85,4	2,974	0,000
CO-49	144,36	3,57	345,4	(N/A)	7,862
CO-28	219,63	3,29	70,5	2,408	65,034
CO-39	132,06	3,26	143,0	(N/A)	38,360
CO-29	219,68	3,26	71,3	2,372	63,814
CO-42	54,42	3,15	40,0	3,641	76,009
CO-27	122,05	3,09	35,0	2,966	62,815
CO-48	125,01	3,09	186,3	(N/A)	20,265
CO-38	97,89	2,98	91,1	2,317	62,749
CO-26	73,37	2,72	20,3	3,057	53,815
CO-17	90,13	2,65	95,3	1,980	48,871
CO-40	37,18	2,54	24,4	3,107	78,271
CO-16	39,80	2,38	38,0	2,788	44,243
CO-37	74,08	2,27	89,9	1,778	36,827
CO-41	28,36	2,01	18,1	2,457	73,252
CO-52	26,96	1,92	24,8	2,148	36,243
CO-57	77,57	1,92	196,9	(N/A)	0,000
CO-56	76,91	1,90	135,0	(N/A)	14,613
CO-54	25,70	1,56	36,9	1,832	19,293
CO-36	20,32	1,55	26,6	2,023	20,387
CO-32	24,53	1,48	92,3	(N/A)	9,281
CO-43	59,65	1,47	124,6	(N/A)	11,557
CO-35	28,77	1,43	105,8	(N/A)	6,360
CO-63	43,74	1,12	42,4	0,633	44,816
CO-53	8,40	0,87	11,0	1,246	13,997

Planteamiento, análisis y selección de alternativas

Planteamiento alternativas de alcantarillado

El planteamiento de alternativas se llevó a cabo a partir de los escenarios y resultados de la fase de diagnóstico desarrollada previamente, considerando la capacidad hidráulica de los colectores el factor relevante para realizar el planteamiento de alternativas.

Figura 35Proyección de colectores planteados

Fuente: Autores

Se plantea la unificación de las redes, donde se eliminen los vertimientos a predios, con el fin de conducirlas hacia la quebrada Torres, a continuación, se presenta las alternativas que se tendrían de acuerdo a este planteamiento, teniendo en cuenta unos costos aproximados, ya que estos cambiarían de acuerdo a cotizaciones y precios en actualización, adicionalmente se recomendaría realizar un presupuesto más detallado con las actividades constructivas que conlleva estas optimizaciones.

Alternativa 1

Consiste en mantener el sistema de alcantarillado combinado, se proyecta la ampliación de 1409,34 m de tubería en material de concreto de la siguiente manera:

Tabla 12 *Alternativa 1*

Redes Colectoras Proyectadas:						
Diámetro mm	Material	Longitud (m)	Precio por ml (*)		Costo Total	
6"	Concreto	717,89	\$	55.481,43	\$	39.829.563,78
8"	Concreto	165,51	\$	72.081,43	\$	11.930.197,48
10"	Concreto	525,94	\$	122.901,43	\$	64.638.778,09
12"	Concreto	0,00	\$	139.068,43	\$	-
14"	Concreto	0,00	\$	197.341,43	\$	-
Subtotal		1409,34			\$	116.398.539,35
Pozos de Inspección	Proyectados:					
Diámetro interno m	Profundidad (m)	Cantidad	Valor (**)		Cost	o Total
1,0	Menores a 1 m	9	\$	1.519.181,66	\$	13.672.634,94
1,2	Entre 1.0 m <h< 1.5="" m<="" td=""><td>22</td><td>\$</td><td>1.588.202,53</td><td>\$</td><td>34.940.455,66</td></h<>	22	\$	1.588.202,53	\$	34.940.455,66
1,2	Entre 1.5 m <h< 2.0="" m<="" td=""><td>0</td><td>\$</td><td>2.451.553,56</td><td>\$</td><td>-</td></h<>	0	\$	2.451.553,56	\$	-
1,2	Entre 2.0 m <h< 2.50="" m<="" td=""><td>0</td><td>\$</td><td>3.275.747,91</td><td>\$</td><td>-</td></h<>	0	\$	3.275.747,91	\$	-
1,5	Entre 3.5 m <h< 5="" m<="" td=""><td>0</td><td>\$</td><td>5.108.376,39</td><td>\$</td><td>-</td></h<>	0	\$	5.108.376,39	\$	-
Subtotal		31			\$	48.613.090,60
Total, Alternativa	Total, Alternativa 1				\$	165.011.629,95

Fuente: Autores

Alternativa 2

Consiste en mantener el sistema de alcantarillado combinado, se proyecta la ampliación de 1409,34 m de tubería en material PEAD se la siguiente manera:

Tabla 13 *Alternativa 2*

Redes Colectoras Pr	oyectadas:						
Diámetro mm	Material	Longitud (m)	Precio por ml (*)		Costo	Costo Total	
6"	Polietileno de alta densidad	717,89	\$	198.541,90	\$	142.531.244,59	
8"	Polietileno de alta densidad	165,51	\$	115.666,41	\$	19.143.948,07	
10"	Polietileno de alta densidad	525,94	\$	186.682,24	\$	98.183.658,18	
12"	Polietileno de alta densidad	0,00	\$	298.547,99	\$	-	
14"	Polietileno de alta densidad	0,00	\$	379.622,89	\$	-	
Subtotal		1409,34			\$	259.858.850,84	
Pozos de Inspección	Proyectados:						
Diámetro interno m	Profundidad (m)	Cantidad	Valor (**)	Costo Total		o Total	
1,0	Menores a 1 m	9	\$	1.519.181,66	\$	13.672.634,94	
1,2	Entre 1.0 m <h< 1.5="" m<="" td=""><td>22</td><td>\$</td><td>1.588.202,53</td><td>\$</td><td>34.940.455,66</td></h<>	22	\$	1.588.202,53	\$	34.940.455,66	
1,2	Entre 1.5 m <h< 2.0="" m<="" td=""><td>0</td><td>\$</td><td>2.451.553,56</td><td>\$</td><td>-</td></h<>	0	\$	2.451.553,56	\$	-	
1,2	Entre 2.0 m <h< 2.50="" m<="" td=""><td>0</td><td>\$</td><td>3.275.747,91</td><td>\$</td><td>-</td></h<>	0	\$	3.275.747,91	\$	-	
1,5	Entre 3.5 m <h< 5="" m<="" td=""><td>0</td><td>\$</td><td>5.108.376,39</td><td>\$</td><td>-</td></h<>	0	\$	5.108.376,39	\$	-	
Subtotal		31			\$	48.613.090,60	
Total, Alternativa 2	2				\$	308.471.941,44	

Alternativa 3

Consiste en mantener el sistema de alcantarillado combinado, se proyecta la ampliación de 1409,34 m de tubería en material de PVC se la siguiente manera:

Tabla 14 *Alternativa 3*

Redes Colectoras Proyectadas:						
Diámetro mm	Material	Longitud (m)	Precio por ml	(*)	Costo To	tal
6"	PVC	717,89	\$	52.659,53	\$	37.803.749,99
8"	PVC	165,51	\$	70.714,01	\$	11.703.875,80
10"	PVC	525,94	\$	116.678,20	\$	61.365.732,51
12"	PVC	0,00	\$	167.900,70	\$	-

14"	PVC	0,00	\$	198.009,20	\$	-
Subtotal		1409,34			\$	110.873.358,30
Diámetro interno m	Profundidad (m)	Cantidad	Valor (**)		Costo	Total
1,0	Menores a 1 m	9	\$	1.519.181,66	\$	13.672.634,94
1,2	Entre 1.0 m <h< 1.5="" m<="" td=""><td>22</td><td>\$</td><td>1.588.202,53</td><td>\$</td><td>34.940.455,66</td></h<>	22	\$	1.588.202,53	\$	34.940.455,66
1,2	Entre 1.5 m <h< 2.0="" m<="" td=""><td>0</td><td>\$</td><td>2.451.553,56</td><td>\$</td><td>-</td></h<>	0	\$	2.451.553,56	\$	-
1,2	Entre 2.0 m <h< 2.50="" m<="" td=""><td>0</td><td>\$</td><td>3.275.747,91</td><td>\$</td><td>-</td></h<>	0	\$	3.275.747,91	\$	-
1,5	Entre 3.5 m <h< 5="" m<="" td=""><td>0</td><td>\$</td><td>5.108.376,39</td><td>\$</td><td>-</td></h<>	0	\$	5.108.376,39	\$	-
Subtotal		31			\$	48.613.090,60
Total, Alternativa 3					\$	159.486.448,90

Análisis de alternativas

La metodología a utilizarse basa en la creación de una matriz de calificación que incluye los distintos aspectos a evaluar, que sirvan como base para seleccionar la mejor alternativa de sistemas de recolección y transporte de aguas residuales y aguas lluvias, teniendo en cuenta criterios y puntajes de evaluación. La matriz de calificación se encuentra dividida en los siguientes aspectos:

Aspectos técnicos

Los aspectos técnicos aportan un peso máximo de 30 puntos sobre un total del 100 de los aspectos a evaluar en cada alternativa, pretende evaluar cuantitativamente variables relacionadas con la solución tecnológica escogida y con la operación y el mantenimiento. Son éstas las variables que finalmente reciben el puntaje.

Área requerida

Este ítem se refiere al área necesaria para la construcción y área disponible para futuras ampliaciones incluyendo el área del lote y la disponibilidad de terrenos adyacentes, a mayor área menor puntaje y viceversa.

Materiales y equipos a usar (fácil y no costosa adquisición)

Este ítem se refiere a la disponibilidad de materiales y equipos en la zona de influencia.es decir la facilidad de adquisición de materiales, equipos y accesorios tanto para la implantación como la operación y mantenimiento.

Flexibilidad de ajustes y ampliación

Este ítem se refiere a la posibilidad de ampliar sistemas de recolección y transporte de aguas residuales y aguas lluvias, adicionar y/o cambiar de tecnología. A mayor facilidad de ajustes de ampliación mayor puntuación.

Requerimientos de bombeo

Evalúa la necesidad de instalar un sistema de bombeo en los sistemas de recolección y transporte de aguas residuales y aguas lluvias. A mayores requerimientos de bombeo menor puntaje.

Facilidad y flexibilidad de operación

Este ítem hace referencia al grado de complejidad en materia de operación de los sistemas de redes de acueducto y alcantarillado con sus respectivas estructuras para las actividades de operación. A mayor complejidad del sistema a operar menor será su puntuación.

Facilidad y flexibilidad de mantenimiento

Este ítem hace referencia al grado de complejidad en materia de mantenimiento de los sistemas de redes de acueducto y alcantarillado con sus respectivas estructuras para las actividades de mantenimiento. A mayor complejidad del sistema a mantener menor será su puntuación.

Durabilidad

Este ítem hace referencia al periodo de reposición de redes de acueducto y alcantarillado incluidas sus estructuras. Entre mayor sea el tiempo de reposición, mayor será su puntuación.

Aspectos de orden socio-ambientales

Dentro de este ítem se presentan las variables que afectan a la comunidad y al medio ambiente, divididos en dos etapas bien definidas: etapa de construcción y etapa de operación de los sistemas.

Para ello los hemos clasificado como componentes y los hemos definido como:

- ✓ Afectaciones o incidencias del proceso constructivo a la población
- ✓ Afectaciones o incidencias del proceso constructivo al medio ambiente
- ✓ Afectaciones o incidencias del proceso de operación a la población
- ✓ Afectaciones o incidencias del proceso de operación al medio ambiente

Los aspectos socioambientales aportan un peso máximo de 30 puntos sobre un total del 100 de los aspectos a evaluar en cada alternativa, pretende evaluar cuantitativamente variables relacionadas con los impactos generados en las fases constructivas y de operación en el ambiente y la población que se encuentra en la zona de estudio.

Requerimientos de energía

Este ítem hace referencia a la necesidad de emplear energía eléctrica en los procesos que hacen parte de captación, redes de aducción, estructuras de pretratamiento, líneas de conducción, redes de distribución y sistemas de transporte de aguas residuales y aguas lluvias. La mayor puntuación se obtendrá para un sistema que demande menor energía o viceversa.

En Lo Constructivo

Generación de contaminación

Este ítem hace referencia al impacto generado durante el proceso constructivo asociado con olores, ruidos, polvo y otros. Entre mayor sea el impacto generado menor será la calificación.

Generación de empleo de trabajadores de localidad

Este ítem hace referencia al número de trabajadores empleados durante el proceso constructivo. A mayor número de trabajadores empleados mayor será la puntuación.

Generación de obstrucciones del espacio público

Este ítem corresponde a la influencia de las obras en los espacios públicos. A mayor interferencia menor puntuación.

Contaminación de cursos de agua superficial

Este ítem se refiere al manejo de subproductos provenientes de la fase constructiva a las fuentes hídricas. A mayor manejo de desechos y/o subproductos en la obra mayor será su puntaje

Cambios en el paisaje

Este ítem se refiere a cambios que se generen durante la fase constructiva al entorno donde se emplazaran los sistemas; entre mayor sea la afectación, menor será la puntuación.

Contaminación y daños al suelo

Este ítem se refiere a las afectaciones que se den al suelo producto de los procedimientos constructivos: eliminación de capa vegetal, infiltraciones al suelo producto de derrames de aceites durante la operación y mantenimiento de equipos.

Incidencias sobre la flora y fauna

Este ítem se refiere a la afectación de la biota en el área de influencia del proyecto. Entre mayor sea la afectación menor será la puntuación.

En La Operación

Generación de contaminación

Este ítem hace referencia al impacto generado durante el proceso operativo asociado con olores, ruidos, polvo, vectores y otros. Entre mayor sea la afectación menor será la calificación.

Generación de empleo de trabajadores de localidad

Este ítem hace referencia al número de trabajadores empleados durante el proceso operativo. A mayor número de trabajadores empleados mayor será la puntuación.

Calidad de vida

Este ítem hace referencia a la ampliación de la cobertura en materia de servicios públicos de acueducto y alcantarillado cumpliendo las necesidades básicas de suministro de agua potable y recolección y transporte de aguas residuales, entre mayor sea la cobertura mayor es su puntuación.

Contaminación de cursos de agua superficial

Este ítem se refiere al manejo de aguas excedentes que pueden afectar a los cursos de agua cercanos a la zona de influencia proporcionado en el proceso operativo. Tendrá mayor

puntaje si existen en el diseño estructuras de alivio y de pre-tratamiento antes de ser vertidas directamente a las fuentes.

Cambios en el paisaje

Este ítem se refiere a cambios estéticos en el paisaje que se ven afectados durante la operación de los sistemas de acueducto y alcantarillado incluyendo sus estructuras, como es el caso del manejo y la disposición de lodos y biosólidos. Entre mayor sea la afectación, menor será la puntuación.

Contaminación y daños al suelo

Este ítem se refiere a cambios que se generen durante las fases operativa y de mantenimiento, como es el caso del manejo y la disposición de lodos y biosólidos; Entre mayor sea el aprovechamiento y la correcta disposición de los mismos, mayor será la puntuación.

Volumen de residuos sólidos generados

Este ítem hace referencia al volumen de biosólidos generados durante la operación y mantenimiento de los sistemas. Entre mayor sea el volumen menor será la puntuación.

Aspectos Económicos

Los análisis desde el punto de vista económico son de vital importancia ya que mediante ella se pueden concretar los proyectos. Es importante que las alternativas presenten los menores costos de construcción, operación y mantenimiento. Para ello hemos dividido la evaluación en dos fases bien definidas:

- a) Construcción y b) operación.
- b) Por muy ventajosa que sea una alternativa al mirar sus aspectos técnicos y socioambientales, nada se logra si no existe la factibilidad económica.

Los aspectos económicos aportan un peso máximo de 40 puntos sobre un total del 100 de los aspectos a evaluar en cada alternativa, pretende evaluar cuantitativamente variables relacionadas con costos del terreno, construcción, operación y el mantenimiento del sistema.

Valor de la tierra a adquirir

Este ítem relaciona el costo por metro cuadrado del terreno donde se llevará a cabo la obra, teniendo en cuenta que se haya incluido las áreas para futuras ampliaciones. Este ítem tendrá mayor puntuación cuando el área del terreno seleccionado sea el más económico y sea el que aporte mayor beneficio para el proyecto.

Costos de construcción

Este ítem relaciona el costo por metro lineal en materia de redes y metros cuadrados para las estructuras para la alternativa seleccionada. Este ítem tendrá mayor puntaje cuando el costo sea menor o viceversa.

Costos de operación y mantenimiento

Este ítem relaciona el costo por metro lineal donde involucra costos de personal, insumos, energía, reposición de equipos y costos de mantenimiento anual. Este ítem tendrá mayor puntaje cuando el costo sea menor o viceversa.

Adicional a lo expuesta anteriormente se determinan los criterios de selección de materiales de tuberías indicado en el artículo 14 de la Resolución 0799 de 2021, por la cual se modifica el artículo 45 de la Resolución 0330 de 2027, en este caso se realiza una comparación de diferentes criterios para la selección del material de las tuberías a emplear en la alternativa seleccionada

Tabla 15 *Análisis comparativo de materiales*

Parámetro	PVC	PEAD	Concreto
hermeticidad	Impiden la exfiltración de agua de los conductos, protegiendo el medio ambiente al garantizar que las aguas transportadas no se exfiltren al medio y eventualmente Puedan contaminar el agua subsuperficial. impiden la infiltración, garantizando la estabilidad del relleno de la zanja, así como las estructuras en la superficie. Además, garantizan que el caudal transportado sea el caudal diseñado, asegurando el adecuado funcionamiento del sistema de alcantarillado y los caudales, que llegan a las plantas de tratamiento. Esta característica, igualmente, impide la penetración de raíces que pueden causar obstrucciones en los conductos.	Esta tubería presenta juntas de perfecta estanqueidad bidireccional a corto y a largo plazo, garantizado una completa hermeticidad del sistema	Baja Permeabilidad
Flexibilidad	Su flexibilidad, asegura excelente comportamiento a los movimientos del suelo, sismos y asentamientos diferenciales, brindando estabilidad al sistema. La rigidez de la Tubería más la rigidez del suelo que la rodea, aportan la resistencia estructural necesaria para soportar las cargas de diseño, conservando las ventajas de su flexibilidad.	Radios de curvatura desde 50 veces el diámetro exterior, resistencia de deflexiones hasta un 30% sin presentar fracturas o agrietamientos debido a su alta flexibilidad.	Baja flexibilidad
Resistencia a la Abrasión	el proceso de abrasión se presenta gradualmente sobre una gran área y no en puntos localizados, como en otros materiales generando fallas más rápidas (menor vida útil). La pared interna lisa y dureza del material, presentan un excelente comportamiento a la abrasión de los materiales presentes en el agua que transportan, con mínimo desgaste de sus paredes.	En los sistemas de alcantarillado como e los drenajes es muy evidente el ataque por abrasión producido principalmente en la parte inferior de la tubería, la tubería de PEAD resiste de mejor manera estos ataques.	A los ensayos de abrasión resiste 150.000 ciclos y el adelgazamiento de la pared de la tubería es mucho mayor (menor Vida útil).
Rigidez	Para diámetros grandes se presenta una rigidez de 28 PSI cumpliendo con la norma NTC 5055 ASTM F 794.	Presión de operación hasta de 1 bar.	Con mezclas secas con baja relación agua- cemento, con lo cual se obtiene un concreto de alta densidad.

Matriz de evaluación de alternativas de redes de alcantarillado

A continuación, se realiza la ponderación, de acuerdo a los aspectos, componentes y variables, teniendo en cuenta el proceso de construcción de estas obras civiles y cómo afectaría a las diferentes variables.

Tabla 16 *Matriz de evaluación alternativas de alcantarillado*

			PONDERACION			CALIFICACION PUNTAJE			
			PUNTAJE			ALT	ERNA'	ΓIVAS	
ASPECTOS	COMPONENTES	VARIABLES	В	R	M	1	2	3	
	•	AREA REQUERIDA	5	3	1	5	5	5	
		MATERIALES Y EQUIPOS A USAR (FACIL Y NO COSTOSA ADQUISICION)	5	2	1	2	1	5	
	SOLUCION TECNOLOGICA	FLEXIBILIDAD DE AJUSTES Y AMPLIACION	3	2	1	3	3	3	
TECNICOS (3		REQUERIMIENTOS DE BOMBEO (TODO POR GRAVEDAD =5PTS)	5	3	1	5	5	5	
PUNTOS)		VULNERABILIDAD	3	2	1	2	2	2	
		FACILIDAD Y FLEXIBILIDAD DE OPERACIÓN	3	2	1	2	2	2	
	OPERACIÓN Y MANTENIMIENTO	Y FACIBILIDAD Y FELXIBILIDAD DE MANTENIMIENTOS	3	2	1	2	2	3	
	MANTENIMIENTO	DURABILIDAD	3	2	1	2	3	3	
		GENERACION DE CONTAMINACION	2	1	0	2	2	2	
	AFECTACIONES AI	GENERACION DE EMPLEO	2	1	0	2	2	2	
	PROCESO CONSTRUCTIVO	GENERACION DE OBSTRUCCIONES	2	1	0	1	1	1	
	CONDINCTIVO	PREFACTIBILIDAD PERMISO SERVIDUMBRES	2	1	0	2	2	2	
	AFECTACIONES (CONTAMINACION DE CURSOS DE AGUA	2	1	0	1	1	1	
	INCIDENCIAS DE	CAMBIOS EN EL PAISAJE	2	1	0	1	1	1	
SOCIO-	PROCESO CONSTRUCTIVO AI	CONTAMINACION Y DAÑOS AL SUELO	2	1	0	1	1	1	
AMBIENTALES		INCIDENCIAS SOBRE LA FLORA Y FAUNA	2	1	0	2	2	2	
(30 PUNTOS)	AFECTACIONES DEL PROCESO DE	GENERACION DE CONTAMINACION	3	1	0	1	1	1	
	OPERACIÓN A LA POBLACION	A GENERACION DE EMPLEO	2	1	0	2	2	2	
	AFECTACIONES	CONTAMINACION DE CURSOS DE AGUA	3	1	0	1	1	1	
		CAMBIOS EN EL PAISAJE	2	1	0	1	1	1	
		CONTAMINACION Y DAÑOS AL SUELO	2	1	0	1	1	1	
	MEDIO AMBIENTE	VOLUMEN DE RESIDUOS SOLIDOS GENERADOS	2	1	0	1	1	1	
ECONOMICOS	FASE DISCONSTRUCCION	COSTOS DE CONSTRUCCION	18	8	4	8	18	18	
(40 PUNTOS)	FASE DI OPERACIÓN	COSTOS DE OPERACIÓN Y MANTENIMIENTO	22	10	6	10	22	22	
PUNTAJE TOTA	L		100	50	18	60	82	87	

Fuente: Autores de la Investigación

Teniendo en cuenta la metodología presentada anteriormente a continuación se relaciona la evaluación realizada para cada una de las alternativas.

Tabla 17 *Matriz y ponderación de las alternativas*

			PONDERACION		CALIFICACION				
			PUNTAJE PUNTAJE DE ALTER					ALTERNATIVAS	
ASPECTOS	COMPONENTES	VARIABLES	В	R	М	1	2	3	JUSTIFICACION
		1. Área requerida	5	3	1	5	5	5	Las tres alternativas reciben la misma ponderación, pues ocuparían la misma extensión longitudinal de tubería, por lo tanto igual área de construcción.
TECNICOS (3	0 SOLUCION TECNOLOGICA	2. Materiales y equipos a usar (fácil y no costosa adquisición)	5	2	1	2	1	5	La alternativa 3, tiene un buen nivel de complejidad en tema de adquisición de materiales y equipos
		3. Flexibilidad de ajustes y ampliación	3	2	1	3	3	3	Las tres alternativas reciben la misma puntuación pues da la posibilidad a la ampliación del sistema de recolección y transporte de
		4. Requerimientos de bombeo	5	3	1	5	5	5	aguas residuales Las tres alternativas reciben la misma puntuación ya que ninguna requiere sistemas de bombeo.

	5. Vulnerabilidad	3	2	1	2	2	2	Las 3 alternativas presentan el mismo índice de vulnerabilidad significativo ya que continua con el manejo de aguas servidas combinadas, manteniendo los impactos ambientales generados actualmente.
	6. Facilidad y flexibilidad de operación	3	2	1	2	2	2	Todas las redes tienen igual puntuación ya que tienen el mismo nivel de complejidad en materia de operación de sistemas de redes. Mayor facilidad
OPERACIÓN Y MANTENIMIENTO	7. Facilidad y flexibilidad de mantenimiento	3	2	1	2	2	3	en la operación por el material en la alternativa 3, todas ofrecen fácil mantenimiento por la cantidad de pozos y tramos
	8. Durabilidad	3	2	1	2	3	3	Las alternativas plantean una proyección de 25 años de vida útil teniendo en cuenta el material en las soluciones planteadas, por lo tanto, las 2 y 3 reciben mas puntuación.

		9. Generación de contaminación	2	1	0	2	2	2	Todas las alternativas tienen la misma puntuación, ya que plantean la misma extensión longitudinal de tubería y en su etapa de construcción generaría la misma cantidad de polvo y ruido, por las actividades
SOCIO- AMBIENTALES (30 PUNTOS)	AFECTACIONES AL PROCESO CONSTRUCTIVO	10. Generación de empleo	2	1	0	2	2	2	excavaciones Las 3 alternativas plantean la ejecución en una misma extensión longitudinal de tubería, por lo que en la etapa de construcción generaría empleo en la zona Las 3
		11. generación de obstrucciones	2	1	0	1	1	1	alternativas tienen la misma puntuación pues plantean la misma extensión longitudinal de tubería, por lo que en la etapa de construcción, generaría obstrucciones en el espacio publico vehicular.

	12. Prefactibilidad permiso servidumbres	2	1	0	2	2	2	Las tres alternativas plantean el trazado de las redes por vía publica, por lo tanto, no sería necesaria la obtención de servidumbres para el proyecto, por lo que reciben la misma puntuación Todas las
	13. Contaminación de cursos de agua	2	1	0	1	1	1	alternativas obtienen el mismo puntaje, ya que plantea el mismo sistema de alcantarillado combinado, por lo que tendrían el mismo impacto por los vertimientos de aguas servidas combinadas
AFECTACIONES O INCIDENCIAS DEL PROCESO CONSTRUCTIVO AL MEDIO AMBIENTE	14. Cambios en el paisaje	2	1	0	1	1	1	alternativas reciben la misma puntuación, ya que existe la probabilidad de cambio paisajístico por el planteamiento de extensión de
	15. Contaminación y daños al suelo	2	1	0	1	1	1	tubería Todas las alternativas reciben la misma puntuación, por que plantean la misma ejecución en cuestión de extensión longitudinal de

POBLACION

tubería y en su etapa de 4

El grado de impacto sobre la flora y fauna en la etapa de ejecución de las alternativas planteadas seria 1 0 2 2 2 16. Incidencias sobre la flora y fauna mínima ya que la zona de impacto es de carácter urbano, por lo que todas las alternativas reciben la misma puntuación Todas las alternativas obtienen mismo puntaje, porque mantienen mismo sistema 1 0 1 1 1 17. generación de contaminación combinado, por lo que se vería afectado el impacto por **AFECTACIONES** vertimientos DEL PROCESO DE sobre fuentes OPERACIÓN A LA aledañas En la fase de operación de la ejecución de las 3 alternativas se generaría 1 0 2 2 2 18. Generacion de empleo misma cantidad de empleo en la región como consecuencia reciben la misma puntuación

tres

Las

	19. Contaminación de cursos de agu	ua 3	1	0	1	1 1	alternativas mantienen el mismo sistema combinado, el sector actualmente no presenta PTAR por lo que se llevaría los vertimientos a la quebrada. Las alternativas obtienen el
AFECTACIO! DEL PROCE: OPERACIÓN MEDIO	SO DE	2	1	0	1	1 1	mismo puntaje pues la operación de los sistemas generaría un mínimo impacto sobre el paisaje Las 3
AMBIENTE	21. Contaminación y daños al suelo	2	1	0	1	1 1	alternativas reciben el mismo puntaje, pues la operación de los sistemas genera el mismo impacto sobre el suelo
	22. Volumen de residuos sólidos ge	nerados 2	1	0	1	1 1	Las tres alternativas reciben la misma puntuación pues la operación de los sistemas generaría la misma producción de
ECONOMICOS FASE (40 PUNTOS) CONSTRUCC	DE 23. Costos de construcción CION	18	8	4	8	18 18	residuos solidos La alternativa 1 al ampliar la capacidad de los colectores en gran proporción se convierte en la alternativa con mayor costo y menor

puntuación para este ítem Las alternativas 2 y 3 reciben mayor puntuación debido operación mantenimiento a largo plazo, y FASE 10 6 10 22 22 24. Costos de operación y mantenimiento **OPERACIÓN** de acuerdo a esto mantendría mismo sistema por lo actualmente se opera misma manera

100

50 18 60 82 87

Fuente: Autores

PUNTAJE TOTAL

Selección de alternativas

Teniendo en cuenta los resultados hidráulicos de la modelación del alcantarillado actual, el sistema actual de alcantarillado, no tiene la capacidad hidráulica para soportar periodos de tormentas muy bruscos en este caso un tiempo de retorno de 2 años significa que se espera que ocurra un evento de lluvia o inundación de una cierta magnitud, como puede ser una lluvia intensa, una vez cada 2 años en promedio, pues se puede evidenciar que no cumplen con los parámetros hidráulicos, por lo que pueden generar colmataciones dentro del sistema, adicionalmente la red es antigua por lo que es necesario tener un material que a largo plazo sea de fácil mantenimiento y fácil operación.

Se selecciona de acuerdo al análisis técnico y operativo, la elección de la tubería en PVC, pues la pared lisa de los tubos, significa baja resistencia al flujo dando como resultado mayor capacidad hidráulica permitiendo menores pendientes y diámetro de diseño por lo que se reduce en el factor económico.

Teniendo en cuenta el análisis y evaluación de alternativas desarrollado en los ítems anteriores se llega a la conclusión que la alternativa 3 recibe una mayor calificación, por lo tanto es seleccionada para realizar la ejecución del diseño, el cual mantendrá el régimen de alcantarillado combinado pero será en material PVC donde se ampliara con 1409,34 y 31 pozos de inspección, ya no se realizarían vertimientos inadecuados en predios privados y lotes baldíos, se realizaría la descarga a la quebrada por lo que sería necesario que la empresa realizara los permisos ambientales necesarios.

Conclusiones

De acuerdo con el diagnóstico realizado, que incluyó el levantamiento de información tanto primaria como secundaria y visitas de campo, se evaluó el estado actual del sistema de alcantarillado de la vereda Morca en el municipio de Sogamoso, departamento de Boyacá. Los resultados ratificaron el estado deficiente del sistema, revelando que las tuberías no solo han superado su vida útil, sino que también no cumplen con los parámetros hidráulicos mínimos según la normatividad vigente. Además, varios pozos de inspección están colapsados y sus tapas están rotas, lo que afecta negativamente a los habitantes del sector.

Al realizar la modelación y su posterior análisis de resultados en los posibles 3 escenarios, donde los períodos de retorno de 2, 5 y 10 años se utilizan en el diseño de sistemas de alcantarillado para calcular la capacidad necesaria y garantizar que el sistema pueda manejar las precipitaciones extremas que ocurren con cierta frecuencia. Estos períodos representan diferentes niveles de riesgo y ayudan a dimensionar adecuadamente el sistema para eventos de lluvia de diferentes magnitudes

Por lo anteriormente mencionado, es imprescindible proponer alternativas para optimizar el sistema actual. De acuerdo con los resultados de la modelación, se planteó unificar los tramos del alcantarillado y dirigirlos hacia el efluente más cercano, que en este caso es la quebrada Las Torres. Se han considerado tres alternativas basadas en los posibles materiales a implementar para la optimización. La alternativa más viable, según la matriz de evaluación de impactos que considera aspectos técnicos, sociales, ambientales y económicos, es la número 3.

Esta alternativa consiste en mantener el sistema de alcantarillado combinado y proyecta la ampliación de 1,409.34 metros de tubería de PVC, con un costo aproximado de \$159,486,448.90. Además de su bajo costo, el material propuesto es de fácil adaptabilidad, lo que permite rescatar los tramos que actualmente se encuentran en buen estado. Esto mejoraría la capacidad hidráulica de los colectores, manteniendo la funcionalidad del alcantarillado combinado y permitiendo gestionar eficazmente las aguas durante situaciones críticas de precipitación.

Es importante aclarar que los costos presentados son aproximados y pueden variar según los precios establecidos por la gobernación, las cotizaciones y los costos asociados a los mecanismos de formulación y viabilidad.

Recomendaciones

Se recomienda realizar la construcción de los tramos anteriormente mencionados en las alternativas planteadas, con el fin de darle una continuidad al sistema actual, en el cual se mejoraría algunos tramos optimizando su diámetro y material, adicionalmente se construirían nuevos tramos para la recolección e unificación de este sistema tan importante.

Es prioritario conectar los tramos de alcantarillado a la red principal para garantizar la continuidad funcional del sistema y evitar vertimientos no controlados de aguas residuales en lotes adjuntos al sector.

Implementar un programa de inspección y mantenimiento regular para identificar y reparar daños en la red de alcantarillado antes de que se conviertan en problemas graves. Esto incluye la limpieza de tuberías y pozos de inspección para prevenir obstrucciones.

Rehabilitar los pozos de inspección que se encuentran colapsados y reemplazar las tapas de concreto que están rotas. Considerar el uso de materiales más duraderos para las tapas para evitar daños futuros. Revisar y actualizar el diseño del sistema de alcantarillado para asegurar que los diámetros de las tuberías, las pendientes y la capacidad sean adecuados para manejar el caudal actual y futuro, considerando el crecimiento poblacional.

Se recomienda que una vez se inicien las construcciones de estos tramos se verifiquen los procesos constructivos y la aplicación de normas de construcción establecidas dentro de las normas vigentes de agua y saneamiento básico.

Referencias

- Acción Contra el Hambre. (2022, 01 de abril). *Aguas negras: ¿qué son y cómo pueden tratarse?*. https://www.accioncontraelhambre.org/es/aguas-negras-que-son
- Banks, J., Carson, J. S., Nelson, B. L., y Nicol, D. M. (2005). *Discrete-event system simulation.*prentice hall.

 https://lpuguidecom.files.wordpress.com/2017/05/youblisher-com-165164-discrete_event_system_simulation.pdf
- Bently. (2024, 03 de febrero). *SewerCAD*. bently. https://www.intercadsys.com/uploads/brochure/SewerCAD.pdf
- Butler, D., y Davies, J. W. (2000). Urban drainage. Taylor y Francis
- Chanson, H. (2004). Hydraulics of open channel flow. Elsevier Science.
- Davis Mackenzie, L. (2019). Water and wastewater engineering: design principles and practice. (2 ed.). McGraw Hill LLC.
- Donald, C., Rennels., y Hobart M. (2012) "Pipe flow: A practical and comprehensive guide" Wiley
- El Tiempo. (2004, 06 de enero). *Morcá*, *Testimonio de Fe*https://www.eltiempo.com/archivo/documento/MAM-1564988#:%7E:text=Seg%C3%BAn%20la%20historia%2C%20la%20ni%C3%B1a.la%20imagen%20de%20la%20Virgen
- Empresas Públicas de Medellín. (2019). *Norma de Construcción Acometidas de Alcantarillado*EPM.

 https://www.epm.com.co/site/Portals/3/documentos/Aguas/NC_AS_IL02_01_Acometidas_de_Alcantarillado.pdf?ver=2019-01-28-154218-640.
- Hammer, M., y Hammer, M. J. (2014). Water and wastewater technology. (7 ed.) Pearson.
- López, R. (1995). *Elementos de diseño para acueductos y alcantarillados*. (2.ª ed.). Escuela Colombiana de Ingeniería.
- Menon, S. (2011). Pipeline planning and construction field manual. Elsevier Science.
- Ministerio de Medio Ambiente. (2007). *Manual para la gestión de vertidos*. https://www.miteco.gob.es/es/agua/publicaciones/Manual para la gestion de vertidos_tcm30-137170.pdf

- Ministerio de Vivienda, Ciudad y Territorio. (2016). Titulo D reglamento técnico del sector de agua potable y saneamiento básico. https://www.minvivienda.gov.co/sites/default/files/documentos/titulo_d.pdf
- Ministerio de Desarrollo Económico Dirección de Agua Potable y Saneamiento Básico. (2017). Reglamento técnico del sector de agua potable y saneamiento básico. [Resolución 0330 de 2017]. https://procurement-notices.undp.org/view_file.cfm?doc_id=16483
- Monroy Fernández, G. (2014). *Problemática de los sistemas de alcantarillado*. (Trabajo de grado, Universidad Nacional Autónoma de México.) https://sswm.info/sites/default/files/reference attachments/MONROY%202014.%2

 OProblem%C3%A1tica%20de%20los%20sistemas%20de%20alcantar.PDF
- Municipio de Sogamoso. (2010). *Plan maestro de acueducto y alcantarillado de Sogamoso Boyacá*. http://sogamoso.org/pot/archivos/03SERVICIOSPUBLICOS.pdf
- Municipio de Sogamoso. (2012). *Plan de desarrollo municipal. Sogamoso- Boyacá*. https://sogamoso.org/PDM-SOGAMOSO-2012-2015/1%20-%20GENERALIDADES.pdf
- Instituto Colombiano de Normas Técnicas y Certificaciones. (2004, 11 de diciembre). *NTC*1500 Código Colombiano de fontanería. (2ª ed.). ICONTEC

 https://es.slideshare.net/farnebar70/ntc-1500-cdigo-colombiano-de-fontanera
- Padilla Santamaría, M. A. (2009). *Diseño de la red de alcantarillado sanitario y pluvial del corregimiento de La Mesa Cesar*. (Trabajo de grado, Universidad de La Salle). Repositorio Universidad de la Salle https://ciencia.lasalle.edu.co/ing_civil/218
- Peñarete. L., y Rodríguez. A. (2015). *Parque tecnológico del carbón. Sogamoso, Vereda de Morcá*, (Trabajo de Grado, Universidad Santo Tomas). Repositorio USTA. https://repository.usta.edu.co/bitstream/handle/11634/29270/2014luisape%c3%b1arete.pdf?sequence=1&isAllowed=y
- Pérez Carmona, R. (2013). Diseño y construcción de alcantarillados sanitario, pluvial y drenaje de carreteras. ECOE.
- Secretaria de Salud de Sogamoso. (2019). Análisis de situación de salud con el modelo de los determinantes sociales de Salud, municipio de Sogamoso Boyacá 2019. Secretaria de Salud

Tchobanoglous, G., Burton, F. L., y Stensel, H. D. (2003). *Wastewater engineering:* treatment and reuse. McGraw-Hill.

Turnock, B. J. (2016). Public Health: What it is and how it works. Jones y Bartlett Learning.