Mostrar el registro sencillo del ítem

dc.contributor.authorMolina Franky, Jessica Stephaniespa
dc.contributor.authorGómez Rodriguez, Alida Marcelaspa
dc.contributor.authorReyes Santofimio, César Mauriciospa
dc.contributor.authorPlaza Gutiérrez, David Fernandospa
dc.date.accessioned2019-07-26 00:00:00
dc.date.accessioned2022-03-08T16:18:44Z
dc.date.available2019-07-26 00:00:00
dc.date.available2022-03-08T16:18:44Z
dc.date.issued2019-07-26
dc.identifier.issn2389-7325
dc.identifier.urihttps://repositorio.uniboyaca.edu.co/handle/uniboyaca/363
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Boyacáspa
dc.rightsRevista Investigación en Salud Universidad de Boyacá - 2019spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0spa
dc.sourcehttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/348spa
dc.subjectMalariaspa
dc.subjectPlasmodium falciparumspa
dc.subjecteritrocitosspa
dc.subjectproteínas de membranaspa
dc.subjectreceptorspa
dc.subjectmerozoitospa
dc.subjectMalariaeng
dc.subjectPlasmodium falciparumeng
dc.subjecterythrocyteseng
dc.subjectmerozoiteeng
dc.subjectmembrane proteineng
dc.subjectreceptoreng
dc.subjectMaláriaeng
dc.subjectPlasmodium falciparumeng
dc.subjectglóbulos vermelhoseng
dc.subjectmerozoítoeng
dc.subjectproteínas de membranaeng
dc.subjectreceptoreng
dc.titleReceptores del hospedero implicados en la invasión del merozoito de Plasmodium falciparum: Revisiónspa
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.identifier.doi10.24267/23897325.348
dc.identifier.eissn2539-2018
dc.identifier.urlhttps://doi.org/10.24267/23897325.348
dc.relation.bitstreamhttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/348/495
dc.relation.citationeditionNúm. 2 , Año 2019 : Revista Investigación en Salud Universidad de Boyacáspa
dc.relation.citationendpage181
dc.relation.citationissue2spa
dc.relation.citationstartpage158
dc.relation.citationvolume6spa
dc.relation.ispartofjournalRevista Investigación en Salud Universidad de Boyacáspa
dc.relation.referencesWorld Health Organization. World malaria report 2018. 2018. 2. Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global Epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016; 95(6Suppl):15-34. https://doi.org/10.4269/ajtmh.16-0141 3. Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev. 2008;108(9):3656-705. https://doi.org/10.1021/cr068407v 4. Cowman AF, Tonkin CJ, Tham W-H, Duraisingh MT. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe. 2017;22(2):232-45. https://doi.org/10.1016/j.chom.2017.07.003 5. Baum J, Richard D, Riglar DT. Malaria Parasite Invasion: Achieving Superb Resolution. Cell Host Microbe. 2017;21(3):294-6. https://doi.org/10.1016/j.chom.2017.02.006 6. Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol. 2016;32(4):284-95. https://doi.org/10.1016/j.pt.2015.12.007 7. W Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NWM, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLOS Pathog. 2015;11(2):1-25. https://doi.org/10.1371/journal.ppat.1004670 8. Karunamoorthi K. Malaria vaccine: a future hope to curtail the global malaria burden. Int J Prev Med. 2014;5(5):529-38. PMCID:PMC4050672. 9. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. van Ooij C, editor. FEMS Microbiol Rev. 2016;40(3):343-72. https://doi.org/10.1093/femsre/fuw001 10. Gaur D, Mayer DCG, Miller LH. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol. 2004;34(13-14):1413-29. https://doi.org/10.1016/j.ijpara.2004.10.010 11. Pasvol G. How many pathways for invasion of the red blood cell by the malaria parasite? Trends Parasitol. 2003;19(10):430-2. https://doi.org/10.1016/j.pt.2003.08.005 12. Kadekoppala M, Holder AA. Merozoite surface proteins of the malaria parasite: The MSP1 complex and the MSP7 family. Int J Parasitol. 2010;40(10):1155-61. https://doi.org/10.1016/j.ijpara.2010.04.008 13. Goel VK, Li X, Chen H, Liu S-C, Chishti AH, Oh SS. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc Natl Acad Sci. 2003;100(9):5164-9. https://doi.org/10.1073/pnas.0834959100 14. Baldwin MR, Li X, Hanada T, Liu S-C, Chishti AH. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood. 2015;125(17):2704-11. https://doi.org/10.1182/blood-2014-11-611707 15. Li X, Marinkovic M, Russo C, McKnight CJ, Coetzer TL, Chishti AH. Identification of a specific region of Plasmodium falciparum EBL-1 that binds to host receptor glycophorin B and inhibits merozoite invasion in human red blood cells. Mol Biochem Parasitol. 2012;183(1):23-31. https://doi.org/10.1016/j.molbiopara.2012.01.002 16. Rayner JC, Galinski MR, Ingravallo P, Barnwell JW. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci. 2000;97(17):9648-53. https://doi.org/10.1073/pnas.160469097 17. Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham W-H, Triglia T, et al. Reticulocyte and Erythrocyte Binding-Like Proteins Function Cooperatively in Invasion of Human Erythrocytes by Malaria Parasites. Infect Immun. 2011;79(3):1107-17. https://doi.org/10.1128/IAI.01021-10 18. Gilson PR, Crabb BS. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int J Parasitol. 2009;39(1):91-6. https://doi.org/10.1016/j.ijpara.2008.09.007 19. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. octubre de 2016;167(3):610-24. https://doi.org/10.1016/j.cell.2016.07.055 20. Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15(8):479-91. https://doi.org/10.1038/nrmicro.2017.47 21. Bermúdez M, Moreno-Pérez DA, Arévalo-Pinzón G, Curtidor H, Patarroyo MA. Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J. 2018 ;17(1). https://doi.org/10.1186/s12936-018-2456-5 22. Aoki T. A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins. Membranes. 2017;7(4):56. https://doi.org/10.3390/membranes7040056 23. Tomita M, Marchesi VT. Amino-acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc Natl Acad Sci. 1975;72(8):2964-8. https://doi.org/10.1073/pnas.72.8.2964 24. Hassan SN, Thirumulu Ponnuraj K, Mohamad S, Hassan R, Wan Ab Rahman WS. Molecular Detection of Glycophorins A and B Variant Phenotypes and their Clinical Relevance. Transfus Med Rev. 2019;33(2):118-24. https://doi.org/10.1016/j.tmrv.2019.02.003 25. Duraisingh MT, Maier AG, Triglia T, Cowman AF. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc Natl Acad Sci. 2003;100(8):4796-801. https://doi.org/10.1073/pnas.0730883100. 26. Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell. 2005;122(2):183-93. https://doi.org/10.1016/j.cell.2005.05.033 27. Wanaguru M, Crosnier C, Johnson S, Rayner JC, Wright GJ. Biochemical Analysis of the Plasmodium falciparum Erythrocyte-binding Antigen-175 (EBA175)-Glycophorin-A Interaction: implications for vaccine design. J Biol Chem. 2013;288(45):32106-17. https://doi.org/10.1074/jbc.M113.484840 28. Sim BKL, Chitnis CE, Wasniowska K, Millert LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. 1994;264:4. https://doi.org/10.1126/science.8009226 29. Jaskiewicz E, Jodłowska M, Kaczmarek R, Zerka A. Erythrocyte glycophorins as receptors for Plasmodium merozoites. Parasit Vectors. 2019;12(1):317. https://doi.org/10.1186/s13071-019-3575-8 30. Narum DL, Haynes JD, Fuhrmann S, Moch K, Liang H, Hoffman SL, et al. Antibodies against the Plasmodium falciparum Receptor Binding Domain of EBA-175 Block Invasion Pathways That Do Not Involve Sialic Acids. Infect Immun. 2000;68(4):1964-6. https://doi.org/10.1128/IAI.68.4.1964-1966.2000 31. Ohas EA, Adams JH, Waitumbi JN, Orago ASS, Barbosa A, Lanar DE, et al. Measurement of Antibody Levels against Region II of the Erythrocyte-Binding Antigen 175 of Plasmodium falciparum in an Area of Malaria Holoendemicity in Western Kenya. Infect Immun. 2004;72(2):735-41. https://doi.org/10.1128/IAI.72.2.735-741.2004 32. El Sahly HM, Patel SM, Atmar RL, Lanford TA, Dube T, Thompson D, et al. Safety and Immunogenicity of a Recombinant Nonglycosylated Erythrocyte Binding Antigen 175 Region II Malaria Vaccine in Healthy Adults Living in an Area Where Malaria Is Not Endemic. Clin Vaccine Immunol. 2010;17(10):1552-9. https://doi.org/10.1128/CVI.00082-10 33. Koram KA, Adu B, Ocran J, Karikari YS, Adu-Amankwah S, Ntiri M, et al. Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study. PLOS ONE. 2016;11(9):e0163066. https://doi.org/10.1371/journal.pone.0163066 34. Salamanca DR, Gómez M, Camargo A, Cuy-Chaparro L, Molina-Franky J, Reyes C, et al. Plasmodium falciparum Blood Stage Antimalarial Vaccines: An Analysis of Ongoing Clinical Trials and New Perspectives Related to Synthetic Vaccines. Front Microbiol. 2019;10:2712. https://doi.org/10.3389/fmicb.2019.02712 35. Satchwell TJ. Erythrocyte invasion receptors for Plasmodium falciparum : new and old: Erythrocyte invasion receptors for Plasmodium falciparum. Transfus Med. 2016;26(2):77-88. https://doi.org/10.1111/tme.12280 36. Willemetz A, Nataf J, Peyrard T, Arnaud L. A novel GYPB-A-B hybrid gene responsible for Ss and MN typing discrepancies. Transfusion. 2015;55(11):2620-3. https://doi.org/10.1111/trf.13216 37. Mayer DCG, Cofie J, Jiang L, Hartl DL, Tracy E, Kabat J, et al. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc Natl Acad Sci. 2009;106(13):5348-52. https://doi.org/10.1073/pnas.0900878106 38. Salinas ND, Paing MM, Tolia NH. Critical Glycosylated Residues in Exon Three of Erythrocyte Glycophorin A Engage Plasmodium falciparum EBA-175 and Define Receptor Specificity. mBio. 2014;5(5):e01606-14. https://doi.org/10.1128/mBio.01606-14 39. Reid ME, Takakuwa Y, Conboy J, Mohandas N. Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1. Blood. 1990; 75(11)2229-34. PMID: 2346783. 40. Lobo C-A. Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PfEBP-2 (baebl). Blood. 2003;101(11):4628-31. https://doi.org/10.1182/blood-2002-10-3076 41. Maier AG, Duraisingh MT, Reeder JC, Patel SS, Kazura JW, Zimmerman PA, et al. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med. 2003;9(1):87-92. https://doi.org/10.1038/nm807 42. Patel SS, King CL, Mgone CS, Kazura JW, Zimmerman PA. Glycophorin C (Gerbich antigen blood group) and band 3 polymorphisms in two malaria holoendemic regions of Papua New Guinea. Am J Hematol. 2004;75(1):1-5. https://doi.org/10.1002/ajh.10448 43. Maier AG, Baum J, Smith B, Conway DJ, Cowman AF. Polymorphisms in Erythrocyte Binding Antigens 140 and 181 Affect Function and Binding but Not Receptor Specificity in P11lasmodium falciparum. Infect Immun. 2009;77(4):1689-99. https://doi.org/10.1128/IAI.01331-08 44. Thompson JK, Triglia T, Reed MB, Cowman AF. A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes: A P. falciparum ligand that binds a sialylated receptor on erythrocytes. Mol Microbiol. 2001;41(1):47-58. https://doi.org/10.1046/j.1365-2958.2001.02484.x 45. Kang S, Kumanogoh A. Semaphorins in bone development, homeostasis, and disease. Semin Cell Dev Biol. 2013;24(3):163-71. https://doi.org/10.1016/j.semcdb.2012.09.008 46. Xie J, Wang H. Semaphorin 7A as a potential immune regulator and promising therapeutic target in rheumatoid arthritis. Arthritis Res Ther. 2017;19(1):10. https://doi.org/10.1186/s13075-016-1217-5 47. Nogi T, Yasui N, Mihara E, Matsunaga Y, Noda M, Yamashita N, et al. Structural basis for semaphorin signalling through the plexin receptor. Nature. 2010;467(7319):1123-7. https://doi.org/10.1038/nature09473 48. Czopik AK, Bynoe MS, Palm N, Raine CS, Medzhitov R. Semaphorin 7A Is a Negative Regulator of T Cell Responses. Immunity. 2006;24(5):591-600. https://doi.org/10.1016/j.immuni.2006.03.013 49. Jeroen Pasterkamp R, Peschon JJ, Spriggs MK, Kolodkin AL. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature. 2003;424(6947):398-405. https://doi.org/10.1038/nature01790 50. Holmes S, Downs A-M, Fosberry A, Hayes PD, Michalovich D, Murdoch P, et al. Sema7A is a Potent Monocyte Stimulator. Scand J Immunol. 2002;56(3):270-5. https://doi.org/10.1046/j.1365-3083.2002.01129.x 51. Liu H, Juo ZS, Shim AH-R, Focia PJ, Chen X, Garcia KC, et al. Structural Basis of Semaphorin-Plexin Recognition and Viral Mimicry from Sema7A and A39R Complexes with PlexinC1. Cell. 2010;142(5):749-61. https://doi.org/10.1016/j.cell.2010.07.040 52. Bartholdson SJ, Bustamante LY, Crosnier C, Johnson S, Lea S, Rayner JC, et al. Semaphorin-7A Is an Erythrocyte Receptor for P. falciparum Merozoite-Specific TRAP Homolog, MTRAP. PLoS Pathog. 2012;8(11):1-13. https://doi.org/10.1371/journal.ppat.1003031 53. Kato K, Mayer DCG, Singh S, Reid M, Miller LH. Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proc Natl Acad Sci. 2005;102(15):5552-7. https://doi.org/10.1073/pnas.0501594102 54. Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, et al. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000;38(4):706-18. https://doi.org/10.1046/j.1365-2958.2000.02175.x 55. Hodder AN, Crewther PE, Matthew MLSM, Reid GE, Moritz RL, Simpson RJ, et al. The Disulfide Bond Structure of Plasmodium Apical Membrane Antigen-1. J Biol Chem. 1996;271(46):29446-52. https://doi.org/10.1074/jbc.271.46.29446 56. Gilberger T-W, Thompson JK, Reed MB, Good RT, Cowman AF. The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking. J Cell Biol. 2003;162(2):317-27. https://doi.org/10.1083/jcb.200301046 57. Lanzillotti R, Coetzer TL. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein. Malar J. 2006;5(1):100. https://doi.org/10.1186/1475-2875-5-100 58. Gilberger T-W, Thompson JK, Triglia T, Good RT, Duraisingh MT, Cowman AF. A Novel Erythrocyte Binding Antigen-175 Paralogue from Plasmodium falciparum Defines a New Trypsin-resistant Receptor on Human Erythrocytes. J Biol Chem. 2003;278(16):14480-6. https://doi.org/10.1074/jbc.M211446200 59. Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016;159(5):481-90. https://doi.org/10.1093/jb/mvv127 60. Ochrietor JD, Moroz TP, van Ekeris L, Clamp MF, Jefferson SC, deCarvalho AC, et al. Retina-Specific Expression of 5A11/Basigin-2, a Member of the Immunoglobulin Gene Superfamily. Investig Opthalmology Vis Sci. 2003;44(9):4086. https://doi.org/10.1167/iovs.02-0995 61. Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics: CD147-cyclophilin interactions. Clin Exp Immunol. 2010;160(3):305-17. https://doi.org/10.1111/j.1365-2249.2010.04115.x 62. Heller M, von der Ohe M, Kleene R, Mohajeri MH, Schachner M. The immunoglobulin-superfamily molecule basigin is a binding protein for oligomannosidic carbohydrates: an anti-idiotypic approach: Basigin binds to oligomannosidic glycans. J Neurochem. 2003;84(3):557-65. https://doi.org/10.1046/j.1471-4159.2003.01537.x 63. Rodriguez M, Lustigman S, Montero E, Oksov Y, Lobo CA. PfRH5: a novel reticulocyte-binding family homolog of plasmodium falciparum that binds to the erythrocyte, and an investigation of its receptor. PloS One. 2008;3(10):1-8. https://doi.org/10.1371/journal.pone.0003300 64. Arévalo-Pinzón G, Curtidor H, Muñoz M, Patarroyo MA, Bermudez A, Patarroyo ME. A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine. 2012;30(3):637-46. https://doi.org/10.1016/j.vaccine.2011.11.012 65. Wright KE, Hjerrild KA, Bartlett J, Douglas AD, Jin J, Brown RE, et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature. 2014;515(7527):427-30. https://doi.org/10.1038/nature13715 66. Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci. 2015;112(4):1179-84. https://doi.org/10.1073/pnas.1415466112 67. Ntege EH, Arisue N, Ito D, Hasegawa T, Palacpac NMQ, Egwang TG, et al. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate. Vaccine. 2016;34(46):5612-22. https://doi.org/10.1016/j.vaccine.2016.09.028 68. Wong W, Huang R, Menant S, Hong C, Sandow JJ, Birkinshaw RW, et al. Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. Nature. 2019;565(7737):118-21. https://doi.org/10.1038/s41586-018-0779-6 69. Volz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW, et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe. 2016;20(1):60-71. https://doi.org/10.1016/j.chom.2016.06.004 70. Bustamante LY, Bartholdson SJ, Crosnier C, Campos MG, Wanaguru M, Nguon C, et al. A full-length recombinant Plasmodium falciparum PfRH5 protein induces inhibitory antibodies that are effective across common PfRH5 genetic variants. Vaccine. 2013;31(2):373-9. https://doi.org/10.1016/j.vaccine.2012.10.106 71. Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, et al. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight. 2017;2(21): e96381. https://doi.org/10.1172/jci.insight.96381 72. Gao X, Yeo KP, Aw SS, Kuss C, Iyer JK, Genesan S, et al. Antibodies Targeting the PfRH1 Binding Domain Inhibit Invasion of Plasmodium falciparum Merozoites. PLoS Pathog. 2008;4(7):1-15. https://doi.org/10.1371/journal.ppat.1000104 73. Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J. 2003;22(5):1047-57. https://doi.org/10.1093/emboj/cdg096 74. Aniweh Y, Gao X, Gunalan K, Preiser PR. PfRH2b specific monoclonal antibodies inhibit merozoite invasion: PfRH2b involves in Ca 2+ signalling during merozoite invasion. Mol Microbiol. 2016;102(3):386-404. https://doi.org/10.1111/mmi.13468 75. Sahar T, Reddy KS, Bharadwaj M, Pandey AK, Singh S, Chitnis CE, et al. Plasmodium falciparum Reticulocyte Binding-Like Homologue Protein 2 (PfRH2) Is a Key Adhesive Molecule Involved in Erythrocyte Invasion. PLoS ONE. 2011;6(2):1-10. https://doi.org/10.1371/journal.pone.0017102 76. Gao X, Gunalan K, Yap SSL, Preiser PR. Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nat Commun. 2013;4(1):1-11. https://doi.org/10.1038/ncomms3862 77. Cockburn IA, Mackinnon MJ, O’Donnell A, Allen SJ, Moulds JM, Baisor M, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci. 2004;101(1):272-7. https://doi.org/10.1073/pnas.0305306101 78. Furtado PB, Huang CY, Ihyembe D, Hammond RA, Marsh HC, Perkins SJ. The Partly Folded Back Solution Structure Arrangement of the 30 SCR Domains in Human Complement Receptor Type 1 (CR1) Permits Access to its C3b and C4b Ligands. J Mol Biol. 2008;375(1):102-18. https://doi.org/10.1016/j.jmb.2007.09.085 79. Tham W-H, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci. 2010;107(40):17327-32. https://doi.org/10.1073/pnas.1008151107 80. Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, et al. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum. PLoS Pathog. 2010;6(6):1-13. https://doi.org/10.1371/journal.ppat.1000968 81. Park HJ, Guariento M, Maciejewski M, Hauhart R, Tham W-H, Cowman AF, et al. Using Mutagenesis and Structural Biology to Map the Binding Site for the Plasmodium falciparum Merozoite Protein PfRh4 on the Human Immune Adherence Receptor. J Biol Chem. 2014;289(1):450-63. https://doi.org/10.1074/jbc.M113.520346 82. Pantaleo A, Giribaldi G, Mannu F, Arese P, Turrini F. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions. Autoimmun Rev. 2008;7(6):457-62. https://doi.org/10.1016/j.autrev.2008.03.017 83. Zhang D, Kiyatkin A, Bolin JT, Low PS. Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood. 2000;96(9):2925-33. PMID: 11049968 84. Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, et al. Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science. 2015; 350(6261):680-4. https://doi.org/10.1126/science.aaa4335 85. Lewis IA, Campanella ME, Markley JL, Low PS. Role of band 3 in regulating metabolic flux of red blood cells. Proc Natl Acad Sci. 2009;106(44):18515-20. https://doi.org/10.1073/pnas.0905999106 86. Tanner MJA, Martin PG, High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988;256(3):703-12. https://doi.org/10.1042/bj2560703 87. Lux SE, John KM, Kopito RR, Lodish HF. Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci. 1989;86(23):9089-93. https://doi.org/10.1073/pnas.86.23.9089 88. Baldwin M, Yamodo I, Ranjan R, Li X, Mines G, Marinkovic M, et al. Human erythrocyte band 3 functions as a receptor for the sialic acid-independent invasion of Plasmodium falciparum. Role of the RhopH3–MSP1 complex. Biochim Biophys Acta BBA - Mol Cell Res. 2014;1843(12):2855-70. https://doi.org/10.1016/j.bbamcr.2014.08.008 89. Kariuki MM, Li X, Yamodo I, Chishti AH, Oh SS. Two Plasmodium falciparum merozoite proteins binding to erythrocyte band 3 form a direct complex. Biochem Biophys Res Commun. 2005;338(4):1690-5. https://doi.org/10.1016/j.bbrc.2005.10.154 90. Holder AA, Freeman RR. The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. J Exp Med. 1984;160(2):624-9. https://doi.org/10.1084/jem.160.2.624 91. McBride JS, Heidrich H-G. Fragments of the polymorphic Mr 185 000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form an antigenic complex. Mol Biochem Parasitol. 1987;23(1):71-84. https://doi.org/10.1016/0166-6851(87)90189-7spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.spa
dc.title.translatedHost receptors involved in the invasion of Plasmodium falciparum merozoite: Revieweng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Revista Investig. Salud Univ. Boyacá-348.pdf621.6Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Revista Investigación en Salud Universidad de Boyacá - 2019
Excepto si se señala otra cosa, la licencia del ítem se describe como Revista Investigación en Salud Universidad de Boyacá - 2019