Mostrar el registro sencillo del ítem

dc.contributor.authorCuy Chaparro, Laura Esperanzaspa
dc.contributor.authorRicaurte Contreras, Laura Alejandraspa
dc.contributor.authorCamargo Mancipe, Anny Jinethspa
dc.contributor.authorMoreno Pérez, Darwin Andrésspa
dc.date.accessioned2019-07-26 00:00:00
dc.date.accessioned2022-03-08T16:18:44Z
dc.date.available2019-07-26 00:00:00
dc.date.available2022-03-08T16:18:44Z
dc.date.issued2019-07-26
dc.identifier.issn2389-7325
dc.identifier.urihttps://repositorio.uniboyaca.edu.co/handle/uniboyaca/364
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Boyacáspa
dc.rightsRevista Investigación en Salud Universidad de Boyacá - 2019spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0spa
dc.sourcehttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/349spa
dc.subjectBabesia bovisspa
dc.subjectbabesiosisspa
dc.subjectciclo de vidaspa
dc.subjectvacunaspa
dc.subjectantígenospa
dc.subjectBabesia boviseng
dc.subjectbabesiosiseng
dc.subjectlife cycleeng
dc.subjectvaccineeng
dc.subjectantigeneng
dc.subjectBabesia boviseng
dc.subjectbabesioseeng
dc.subjectciclo de vidaeng
dc.subjectvacinaeng
dc.subjectantígenoeng
dc.titleBabesia bovis: Actualidad del desarrollo de una vacunaspa
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.identifier.doi10.24267/23897325.349
dc.identifier.eissn2539-2018
dc.identifier.urlhttps://doi.org/10.24267/23897325.349
dc.relation.bitstreamhttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/349/490
dc.relation.citationeditionNúm. 2 , Año 2019 : Revista Investigación en Salud Universidad de Boyacáspa
dc.relation.citationendpage199
dc.relation.citationissue2spa
dc.relation.citationstartpage182
dc.relation.citationvolume6spa
dc.relation.ispartofjournalRevista Investigación en Salud Universidad de Boyacáspa
dc.relation.referencesHunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37. https://doi.org/10.1016/j.ijpara.2008.03.001 2. Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(7):S247-69. https://doi.org/10.1017/S0031182004005190 3. Gohil S, Kats LM, Sturm A, Cooke BM. Recent insights into alteration of red blood cells by Babesia bovis: moovin’ forward. Trends Parasitol. 2010;26(12):591-9. https://doi.org/10.1016/j.pt.2010.06.012 4. Gray JS. Identity of the causal agents of human babesiosis in Europe. Int J Med Microbiol. 2006;296:131-6. https://doi.org/10.1016/j.ijmm.2006.01.029 5. Nava A, Venzal J, González-Acuña D, Martins T, Guglielmone A. Ticks of the Southern Cone of America. Diagnosis, Distribution, and Hosts with Taxonomy, Ecology and Sanitary Importance. 2017. 6. ECDC. Rhipicephalus sanguineus - current known distribution: January. 2018. 7. Pérez de León AA, Strickman DA, Knowles DP, Fish D, Thacker E, de la Fuente J, et al. One Health approach to identify research needs in bovine and human babesioses: workshop report. Parasit Vectors. 2010;3(1):36. https://doi.org/10.1186/1756-3305-3-36 8. Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25. https://doi.org/10.1016/j.vetpar.2011.05.032 9. Rittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54: 447-54. https://doi.org/10.1016/j.meegid.2017.08.009 10. Kivaria FM. Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop Anim Health Prod. 2006;38(4):291-9. https://doi.org/10.1007/s11250-006-4181-2 11. Bram RA, George JE, Reichard RE, Tabachnick WJ. Threat of Foreign Arthropod-Borne Pathogens to Livestock in the United States. J Med Entomol. 2002;39(3):405-16. https://doi.org/10.1603/0022-2585-39.3.405 12. Gonzalez J, Echaide I, Pabón A, Gabriel Piñeros Jj, Blair S, Tobón-Castaño A. Babesiosis prevalence in malaria-endemic regions of Colombia. J Vector Borne Dis. 2018;55(3):222. https://doi.org/10.4103/0972-9062.249480 13. Ríos-Osorio L, Zapata Salas R, Reyes Vélez J, Mejia J, Baena A. Enzootic Stability of Bovine Babesiosis at Puerto Berrio Region, Colombia. 2010;20(5): 485-492. 14. Vecino JAC, Echeverri JAB, Cárdenas JA, Herrera LAP. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano cundiboyacense (Colombia). Corpoica Cienc Tecnol Agropecu. 2010;11(1):73. https://doi.org/10.21930/rcta.vol11_num1_art:197 15. Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol. 2019;49(2):183-97. https://doi.org/10.1016/j.ijpara.2018.11.002 16. de Waal DT, Combrink MP. Live vaccines against bovine babesiosis. Vet Parasitol. 2006;138(1-2):88-96. https://doi.org/10.1016/j.vetpar.2006.01.042 17. Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chemical reviews. 2011;111(5):3459-507. https://doi.org/10.1021/cr100223m 18. Dubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Invited review Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol. 1998;28(7):1007-13. https://doi.org/10.1016/S0020-7519(98)00076-9 19. Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. A widespread coral-infecting apicomplexan contains a plastid encoding chlorophyll biosynthesis. bioRxiv. 2018. https://doi.org/10.1101/391565 20. Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37. https://doi.org/10.1051/vetres/2009020 21. Vannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ. Babesiosis. Infect Dis Clin North Am. 2015;29(2):357-70. https://doi.org/10.1016/j.idc.2015.02.008 22. OIE. World Organization for Animal Health. 2019. 23. ICA. Enfermedades de declaración obligatoria en Colombia. 2019. 24. OIE. World Organization for Animal Health. 2017. 25. White MW, Suvorova ES. Apicomplexa Cell Cycles: Something Old, Borrowed, Lost, and New. Trends Parasitol. 2018;34(9):759-71. https://doi.org/10.1016/j.pt.2018.07.006 26. Martinsen ES, Perkins SL, Schall JJ. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol. 2008;47(1):261-73. https://doi.org/10.1016/j.ympev.2007.11.012 27. Allred DR, Al-Khedery B. Antigenic variation as an exploitable weakness of babesial parasites. Vet Parasitol. 2006;138(1-2):50-60. https://doi.org/10.1016/j.vetpar.2006.01.039 28. Hines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle. Mol Biochem Parasitol. 1989;37(1):1-9. https://doi.org/10.1016/0166-6851(89)90096-0 29. Florin-Christensen M, Suarez CE, Hines SA, Palmer GH, Brown WC, McElwain TF. The Babesia bovis merozoite surface antigen 2 locus contains four tandemly arranged and expressed genes encoding immunologically distinct proteins. Infect Immun. 2002;70(7):3566-75. https://doiórg/10.1128/IAI.70.7.3566-3575.2002 30. Bennett J, Dolin R, Blaser, M. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 2015;2. 31. Montero E, Rodríguez M, Oksov Y, Lobo CA. Babesia divergens Apical Membrane Antigen 1 and Its Interaction with the Human Red Blood Cell. Infect Immun. 2009;77(11):4783-93. https://doi.org/10.1128/IAI.00969-08 32. Suarez CE, Laughery JM, Bastos RG, Johnson WC, Norimine J, Asenzo G, et al. A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites. Parasitology. 2011;138(7):809-18. https://doi.org/10.1017/S0031182011000321 33. Salama AA, Terkawi MA, Kawai S, AbouLaila M, Nayel M, Mousa A, et al. Specific antibody to a conserved region of Babesia apical membrane antigen-1 inhibited the invasion of B. bovis into the erythrocyte. Exp Parasitol. 2013;135(3):623-8. http://dx.doi.org/10.1016/j.exppara.2013.09.017 34. Lobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5. https://doi.org/10.1097/MOH.0b013e328352245a. 35. Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors. 2016;9(1):439. https://doi.org/10.1186/s13071-016-1731-y. 36. Mehlhorn H, Schein E. The Piroplasms: Life Cycle and Sexual Stages. En: Advances in Parasitology. Elsevier.1985;23:37-103. https://doi.org/10.1016/S0065-308X(08)60285-7 37. Howell JM, Ueti MW, Palmer GH, Scoles GA, Knowles DP. Transovarial Transmission Efficiency of Babesia bovis Tick Stages Acquired by Rhipicephalus (Boophilus) microplus during Acute Infection. J Clin Microbiol. 2007;45(2):426-31. https://doi.org/10.1128/JCM.01757-06 38. Polanco Echeverry DN, Ríos Osorio LA. Aspectos biológicos y ecológicos de las garrapatas duras. Corpoica Cienc Tecnol Agropecu. 2016;17(1):81. ISSN 0122-8706 39. Mehlhorn H, Schein E. The piroplasms: “A long story in short” or “Robert Koch has seen it”. Eur J Protistol. 1993;29(3):279-93. https://doi.org/10.1016/S0932-4739(11)80371-8 40. Jalovecka M, Sojka D, Ascencio M, Schnittger L. Babesia Life Cycle – When Phylogeny Meets Biology. Trends Parasitol. 2019;35(5):356-68. https://doi.org/10.1016/j.pt.2019.01.00 41. Yusuf J. Review on Bovine Babesiosis and its Economical Importance. Journal of Veterinary Medicine and Research. 2017;4(5):1090. 42. Echaide IE, Hines SA, McElwain TF, Suarez CE, McGuire TC, Palmer GH. In vivo binding of immunoglobulin M to the surfaces of Babesia bigemina-infected erythrocytes. Infect Immun. 1998;66(6):2922-7. 43. J. Mosqueda, A. Olvera-Ramírez, G. Aguilar-Tipacamú and G.J. Cantó. Current Advances in Detection and Treatment of Babesiosis. Current Medicinal Chemistry. 2012;19(10):1504-18. https://doi.org/10.2174/092986712799828355 44. Zintl A, Mulcahy G, Skerrett HE, Taylor SM, Gray JS. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin Microbiol Rev. 2003;16(4):622-36. https://doi.org/10.1128/CMR.16.4.622-636.2003 45. AbouLaila M, Sivakumar T, Yokoyama N, Igarashi I. Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol Int. 2010;59(2):278-82. https://doi.org/10.1016/j.parint.2010.02.006. 46. Meng L, Mohan R, Kwok BHB, Elofsson M, Sin N, Crews CM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci. 1999;96(18):10403-8. https://doi.org/10.1073/pnas.96.18.10403 47. Randel RD, Chase CC, Wyse SJ. Effects of gossypol and cottonseed products on reproduction of mammals. J Anim Sci. 1992;70(5):1628-38. https://doi.org/10.2527/1992.7051628x 48. Elton CM, Rodriguez M, Ben Mamoun C, Lobo CA, Wright GJ. A library of recombinant Babesia microti cell surface and secreted proteins for diagnostics discovery and reverse vaccinology. Int J Parasitol. 2019;49(2):115-25. https://doi: 10.1016/j.ijpara.2018.10.003. 49. Brown WC, Palmer GH. Designing Blood-stage Vaccines against Babesia bovis and B. bigemina. Parasitol Today. 1999;15(7):275-81. https://doi.org/10.1016/S0169-4758(99)01471-4 50. Laughery JM, Knowles DP, Schneider DA, Bastos RG, McElwain TF, Suarez CE. Targeted Surface Expression of an Exogenous Antigen in Stably Transfected Babesia bovis. PLoS ONE. 2014;9(5):e97890. https://doi.org/10.1371/journal.pone.0097890 51. Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;1-30. https://doi.org/10.1017/S0031182014000961 52. Mangold AJ, Aguirre DH, Cafrune MM, de Echaide ST, Guglielmone AA. Evaluation of the infectivity of a vaccinal and a pathogenic Babesia bovis strain from Argentina to Boophilus microplus. Vet Parasitol. 1993;51(1-2):143-8. https://doi.org/10.1016/0304-4017(93)90205-2 53. Mafra CL, Patarroyo JH, Silva SS. Babesia bovis: infectivity of an attenuated strain of Brazilian origin for the tick vector, Boophilus microplus. Vet Parasitol. 1994;52(1-2):139-43. https://doi.org/10.1016/0304-4017(94)90043-4 54. Lau AO, Kalyanaraman A, Echaide I, Palmer GH, Bock R, Pedroni MJ, et al. Attenuation of virulence in an apicomplexan hemoparasite results in reduced genome diversity at the population level. BMC Genomics. 2011;12(1):410. https://doi.org/10.1186/1471-2164-12-410 55. Jorge S, Dellagostin OA. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotechnol Res Innov. 2017;1(1):6-13. https://doi.org/10.1016/j.biori.2017.10.001 56. Gaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55. https://doi.org/10.1128/IAI.72.5.2947-2955.2004 57. Terkawi MA, Ratthanophart J, Salama A, AbouLaila M, Asada M, Ueno A, et al. Molecular Characterization of a New Babesia bovis Thrombospondin-Related Anonymous Protein (BbTRAP2). Rodrigues MM, editor. PLoS ONE. 2013;8(12):e83305. https://doi.org/10.1371/journal.pone.0083305 58. Mosqueda J. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Attachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603. https://doi.org/10.1128/IAI.70.3.1599-1603.2002 59. Gimenez AM, Françoso KS, Ersching J, Icimoto MY, Oliveira V, Rodriguez AE, et al. A recombinant multi-antigen vaccine formulation containing Babesia bovis merozoite surface antigens MSA-2a1, MSA-2b and MSA-2c elicits invasion-inhibitory antibodies and IFN-γ producing cells. Parasit Vectors. 2016;9(1):577. https://doi.org/10.1186/s13071-016-1862-1 60. Berens SJ, Brayton KA, Molloy JB, Bock RE, Lew AE, McElwain TF. Merozoite surface antigen 2 proteins of Babesia bovis vaccine breakthrough isolates contain a unique hypervariable region composed of degenerate repeats. Infect Immun. 2005;73(11):7180-9. https://doi.org/10.1128/IAI.73.11.7180-7189.2005 61. Yokoyama N, Suthisak B, Hirata H, Matsuo T, Inoue N, Sugimoto C, et al. Cellular localization of Babesia bovis merozoite rhoptry-associated protein 1 and its erythrocyte-binding activity. Infect Immun. 2002;70(10):5822-6. https://doi.org/10.1128/IAI.70.10.5822-5826.2002 62. Kemp LE, Yamamoto M, Soldati-Favre D. Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiol Rev. 2013;37(4):607-31. https://doi.org/10.1111/1574-6976.12013.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.spa
dc.title.translatedBabesia bovis: An Update on vaccine developmenteng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Revista Investig. Salud Univ. Boyacá-349.pdf348.0Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Revista Investigación en Salud Universidad de Boyacá - 2019
Excepto si se señala otra cosa, la licencia del ítem se describe como Revista Investigación en Salud Universidad de Boyacá - 2019