Mostrar el registro sencillo del ítem

dc.contributor.authorGómez Rodríguez, Alida Marcelaspa
dc.contributor.authorMolina-Franky, Jessicaspa
dc.contributor.authorSalamanca-Jiménez, Davidspa
dc.contributor.authorReyes Santofimio, Cesarspa
dc.date.accessioned2020-03-25 00:00:00
dc.date.accessioned2022-03-08T16:19:01Z
dc.date.available2020-03-25 00:00:00
dc.date.available2022-03-08T16:19:01Z
dc.date.issued2020-03-25
dc.identifier.issn2389-7325
dc.identifier.urihttps://repositorio.uniboyaca.edu.co/handle/uniboyaca/389
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Boyacáspa
dc.rightsRevista Investigación en Salud Universidad de Boyacá - 2020spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0spa
dc.sourcehttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/428spa
dc.subjectmalariaspa
dc.subjectPlasmodium falciparumspa
dc.subjectvacunasspa
dc.subjectinmunogenicidadspa
dc.subjectprotecciónspa
dc.subjectmalariaeng
dc.subjectPlasmodium falciparumeng
dc.subjectvaccineseng
dc.subjectimmunogenicityeng
dc.subjectprotectioneng
dc.subjectmaláriaeng
dc.subjectPlasmodium falciparumeng
dc.subjectvacinaseng
dc.subjectimunogenicidadeeng
dc.subjectproteçãoeng
dc.titleAvances en el desarrollo de una vacuna contra la malaria por Plasmodium falciparum: una revisión de literaturaspa
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.identifier.doi10.24267/23897325.428
dc.identifier.eissn2539-2018
dc.identifier.urlhttps://doi.org/10.24267/23897325.428
dc.relation.bitstreamhttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/428/537
dc.relation.citationeditionNúm. 1 , Año 2020 : Revista Investigación en Salud Universidad de Boyacáspa
dc.relation.citationendpage160
dc.relation.citationissue1spa
dc.relation.citationstartpage137
dc.relation.citationvolume7spa
dc.relation.ispartofjournalRevista Investigación en Salud Universidad de Boyacáspa
dc.relation.referencesWHO: World Health Organization. [Internet]. Ginebra:Suiza; [4 de diciembre de 2019; citado 10 de diciembre de 2019]. World malaria report 2019. [aprox. 5 pantallas]. Available from: https://www.who.int/publications-detail/world-malaria-report-2019. 2. Coelho CH, Doritchamou J, Zaidi I, Duffy P. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. npj Vaccines. 2017;(2):34. https://doi.org/10.1038/s41541-017-0035-3 3. Tahita MC, Tinto H, Menten J, Ouedraogo J-B, Guiguemde RT, van Geertruyden J, et al. Clinical signs and symptoms cannot reliably predict Plasmodium falciparum malaria infection in pregnant women living in an area of high seasonal transmission. Malar J. 2013;12(1):464. https://doi.org/10.1186/1475-2875-12-464 4. Ord RL, Rodriguez M, Lobo CA. Malaria invasion ligand RH5 and its prime candidacy in blood-stage malaria vaccine design. Hum Vaccin & Immunotheraps.2015;11(6):1465-73. https://doi.org/10.1080/21645515.2015.1026496 5. Sinnis P, Coppi A. A long and winding road: The Plasmodium sporozoite’s journey in the mammalian host. Parasit Internal. 2007;56(3):171-8. https://doi.org/10.1016/j.parint.2007.04.002 6. García JE, Puentes A, Patarroyo ME. Developmental Biology of Sporozoite-Host Interactions in Plasmodium falciparum Malaria: Implications for Vaccine Design. Clin. Microbiol. Rev. 2006;19(4):686-707. https://doi.org/10.1128/CMR.00063-05 7. Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, Nussenzweig V, et al. TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell. 1997;90(3):511-22. https://doi.org/10.1016/s0092-8674(00)80511-5 8. Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. 2016;167(3):610-24. https://doi.org/10.1016/j.cell.2016.07.055 9. Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol. 2012;198(6):961-71. https://doi.org/10.1083/jcb.201206112 10. Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol. 2009;7(5):341-54. https://doi.org/10.1038/nrmicro2110 11. Kato K, Mayer DCG, Singh S, Reid M, Miller LH. Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. PNAS. 2005;102(15):5552-7. https://doi.org/10.1073/pnas.0501594102 12. Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. J Immunother. 2017;9(2):131-55. https://doi.org/10.2217/imt-2016-0091 13. Baum J, Gilberger T-W, Frischknecht F, Meissner M. Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol. 2008;24(12):557-63. https://doi.org/10.1016/j.pt.2008.08.006 14. Ahouidi AD, Amambua-Ngwa A, Awandare GA, Bei AK, Conway DJ, Diakite M, et al. Malaria Vaccine Development: Focusing Field Erythrocyte Invasion Studies on Phenotypic Diversity. Trends Parasitol. 2016;32(4):274-83. https://doi.org/10.1016/j.pt.2015.11.009 15. Curtidor H, Patarroyo ME, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opinion on Biological Therapy. 2015;15(11):1567-81. https://doi.org/10.1517/14712598.2015.1075505 16. Cunningham AL, Garçon N, Leo O, Friedland LR, Strugnell R, Laupèze B, et al. Vaccine development: From concept to early clinical testing. Vaccine. 2016;34(52):6655-64. https://doi.org/10.1016/j.vaccine.2016.10.016 17. Rappuoli R, Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature. 2011;473(7348):463-9. https://doi.org/10.1038/nature10124 18. WHO: World Health Organization. [Internet]. Ginebra:Suiza; [ 17 de julio de 2017; citado 20 de noviembre 2019]. Malaria Vaccine Rainbow Tables. [aprox. 1 pantalla]. Available from: https://www.who.int/immunization/research/development/Rainbow_tables/en/ 19. Coffman RL, Sher A, Seder RA. Vaccine Adjuvants: Putting Innate Immunity to Work. J Immun. 2010;33(4):492-503. https://doi.org/10.1016/j.immuni.2010.10.002 20. Kester KE, McKinney DA, Tornieporth N, Ockenhouse CF, Heppner DG, Hall T, et al. Efficacy of recombinant circumsporozoite protein vaccine regimens against experimental Plasmodium falciparum malaria. J Infect Dis. 2001;183(4):640-7. https://doi.org/10.1086/318534 21. Gordon DM, McGovern TW, Krzych U, Cohen JC, Schneider I, LaChance R, et al. Safety, Immunogenicity, and Efficacy of a Recombinantly Produced Plasmodium falciparum Circumsporozoite Protein-Hepatitis B Surface Antigen Subunit Vaccine. J Infectious Diseases. 1995;171(6):1576-85. https://doi.org/10.1093/infdis/171.6.1576 22. Doud, M.B., Koksal, A.C., Mi, L.Z., Song, G., Lu, C., Springer, T.A. Unexpected fold in the circumsporozoite protein target of malaria vaccines. Proc Natl Acad Sci U S A 2012;109:7817-7822. https://doi.org/10.1073/pnas.1205737109 23. Tossavainen, H., Pihlajamaa, T., Huttunen, T.K., Raulo, E., Rauvala, H., Permi, P., Kilpelainen, I.; Protein Sci 2006;15:1760-1768. https://doi.org/10.1110/ps.052068506 24. Chen, L., Xu, Y., Healer, J., Thompson, JK, Smith, BJ, Lawrence, MC, Cowman, AF. Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes. Elife. 2014;3. https://doi.org/10.7554 / eLife.04187 25. Lim, S.S., Yang, W., Krishnarjuna, B., Kannan Sivaraman, K., Chandrashekaran, I.R., Kass, I., MacRaild, C.A., Devine, S.M., Debono, C.O., Anders, R.F., Scanlon, M.J., Scammells, P.J., Norton, R.S., McGowan, S. Structure and Dynamics of Apical Membrane Antigen 1 from Plasmodium falciparum FVO. Biochemistry. 2014;53:7310-7320. https://doi.org /10.1021/bi5012089 26. Tolia, N.H., Enemark, E.J., Sim, B.K., Joshua-Tor, L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell. 2005;122:183-193. https://doi.org 10.1016/j.cell.2005.05.033 27. Kester KE, McKinney DA, Tornieporth N, Ockenhouse CF, Heppner DG, Hall T, et al. A phase I/IIa safety, immunogenicity, and efficacy bridging randomized study of a two-dose regimen of liquid and lyophilized formulations of the candidate malaria vaccine RTS,S/AS02A in malaria-naïve adults. Vaccine. 2007;25(29):5359-66. https://doi.org/10.1016/j.vaccine.2007.05.005 28. Macete E, Aponte JJ, Guinovart C, Sacarlal J, Ofori-Anyinam O, Mandomando I, et al. Safety and immunogenicity of the RTS,S/AS02A candidate malaria vaccine in children aged 1-4 in Mozambique. Trop Med Internal Health. 2006;12(1):37-46. https://doi.org/10.1111/j.1365-3156.2006.01754.x 29. Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. The Lancet. 2004;364(9443):1411-20. https://doi.org/10.1016/S0140-6736(04)17223-1 30. Horowitz A, Hafalla JCR, King E, Lusingu J, Dekker D, Leach A, et al. Antigen-Specific IL-2 Secretion Correlates with NK Cell Responses after Immunization of Tanzanian Children with the RTS,S/AS01 Malaria Vaccine. The Journal of Immunology. 2012;188(10):5054-62. https://doi.org/10.4049/jimmunol.1102710 31. White MT, Bejon P, Olotu A, Griffin JT, Bojang K, Lusingu J, et al. A combined analysis of immunogenicity, antibody kinetics and vaccine efficacy from phase 2 trials of the RTS,S malaria vaccine. BMC Med. 2014;12:117. https://doi.org/10.1186/s12916-014-0117-2 32. White MT, Bejon P, Olotu A, Griffin JT, Riley EM, Kester KE, et al. The relationship between RTS,S vaccine-induced antibodies, CD4+ T cell responses and protection against Plasmodium falciparum infection. PLoS ONE. 2013;8(4):e61395. https://doi.org/10.1371/journal.pone.0061395 33. Itsara LS, Zhou Y, Do J, Grieser AM, Vaughan AM, Ghosh AK. The Development of Whole Sporozoite Vaccines for Plasmodium falciparum Malaria. Front Immunol. 2018;9:2748. https://doi.org/10.3389/fimmu.2018.02748 34. Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med. 2016;22(6):614-23. https://doi.org/10.1038/nm.4110 35. Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al. Corrigendum: Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med. 2016;22(6):692. https://doi.org/10.1038/nm.4110 36. Takashima E, Morita M, Tsuboi T. Vaccine candidates for malaria: what’s new? Expert Rev Vaccines. 2016;15(1):1-3. https://doi.org/10.1586/14760584.2016.1112744 37. Richie TL, Billingsley PF, Sim BKL, James ER, Chakravarty S, Epstein JE, et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine. 2015;33:7452–61. https://doi.org/10.1016/j.vaccine.2015.09.096 38. Lyke KE, Ishizuka AS, Berry AA, Chakravarty S, DeZure A, Enama ME, et al. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc Natl Acad Sci USA. 2017;114:2711–6. https://doi.org/10.1073/pnas.1615324114 39. Sissoko MS, Healy SA, Katile A, Omaswa F, Zaidi I, Gabriel EE, et al. Safety and efficacy of PfSPZ vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect Dis. 2017;17:498–509. https://doi.org/10.1016/S1473-3099(17)30104-4 40. Dunachie SJ, Walther M, Epstein JE, Keating S, Berthoud T, Andrews L, et al. A DNA Prime-Modified Vaccinia Virus Ankara Boost Vaccine Encoding Thrombospondin-Related Adhesion Protein but Not Circumsporozoite Protein Partially Protects Healthy Malaria-Naive Adults against Plasmodium falciparum Sporozoite Challenge. Infect Immun. 2006;74(10):5933-42. https://doi.org/10.1128/IAI.00590-06 41. Hill AVS, Reyes-Sandoval A, O’Hara G, Ewer K, Lawrie A, Goodman A, et al. Prime-boost vectored malaria vaccines: Progress and prospects. Human Vaccines. 2010;6(1):78-83. https://doi.org/10.4161/hv.6.1.10116 42. Duffy PE, Sahu T, Akue A, Milman N, Anderson C. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines. 2012;11(10):1261-80. https://doi.org/10.1586/erv.12.92 43. Bejon P, Mwacharo J, Kai O, Mwangi T, Milligan P, Todryk S, et al. A Phase 2b Randomised Trial of the Candidate Malaria Vaccines FP9 ME-TRAP and MVA ME-TRAP among Children in Kenya. PLoS Clinical Trials. 2006;1(6):e. https://doi.org/10.1371/journal.pctr.0010029 44. de Barra E, Hodgson SH, Ewer KJ, Bliss CM, Hennigan K, Collinset A al. A phase Ia study to assess the safety and immunogenicity of new malaria vaccine candidates ChAd63 CS administered alone and with MVA CS. PLoS One. 2014;9(12):e115161. Published 2014 Dec 18. https://doi.org/10.1371/journal.pone.0115161 45. Sheehy SH, Duncan CJ, Elias SC, Choudhary P, Biswas S, Halstead FD, et al. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans. Mol Ther. 2012;20:2355–68. https://doi.org/10.1038/MT.2012.223 46. Deshmukh A, Chourasia BK, Mehrotra S, Kana IH, Paul G, Panda A, et al. Plasmodium falciparum MSP3 exists in a complex on the merozoite surface and generates antibody response during natural infection. Infect Immun. 2018;23;86(8). https://doi.org/10.1128/IAI.00067-18 47. Sirima SB, Nébié I, Ouédraogo A, Tiono AB, Konaté AT, Gansané A, et al. Safety and immunogenicity of the Plasmodium falciparum merozoite surface protein-3 long synthethic peptide (MSP3-LSP) malaria vaccine in healthy, semi-immune adult males in Burkina Faso, West Africa. Vaccine. 2007;25(14). https://doi.org/10.1016/j.vaccine.2006.05.090 48. Nebie I, Diarra A, Ouedraogo A, Tiono AB, Konate AT, Gansane A, et al. Humoral and cell-mediated immunity to MSP3 peptides in adults immunized with MSP3 in malaria endemic area, Burkina Faso. Parasite Immunol. 2009;31(8):474-80. https://doi.org/10.1111/j.1365-3024.2009.01130.x 49. Sirima SB, Tiono AB, Ouédraogo A, Diarra A, Ouédraogo AL, Yaro JB, et al. Safety and immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24 months-old Burkinabe children. PLoS ONE. 2009;4(10):e7549. https://doi.org/10.1371/journal.pone.0007549 50. Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, et al. Phase I Malaria Vaccine Trial with a Long Synthetic Peptide Derived from the Merozoite Surface Protein 3 Antigen. Infect Immun. 2005;73(12):8017-26. https://doi.org/10.1128/IAI.73.12.8017-8026.2005 51. Corradin G, Villard V, Kajava AV. Protein structure based strategies for antigen discovery and vaccine development against malaria and other pathogens. Endocr Metab Immune Disord Drug Targets. 2007;7(4):259-65. https://doi.org/10.2174/187153007782794371 52. Villard V, Agak GW, Frank G, Jafarshad A, Servis C, Nébié I, et al. Rapid Identification of Malaria Vaccine Candidates Based on α-Helical Coiled Coil Protein Motif. Saul A, editor. PLoS ONE. 2007;2(7):e645. https://doi.org/10.1371/journal.pone.0000645 53. Steiner-Monard V, Kamaka K, Karoui O, Roethlisberger S, Audran R, Daubenberger C, et al. The Candidate Blood Stage Malaria Vaccine P27A Induces a Robust Humoral Response in a Fast Track to the Field Phase I Trial in Exposed and Non Exposed Volunteers. Clin Infect Dis. 2018;18;68(3) https://doi.org/10.1093/cid/ciy514 54. Li J, Mitamura T, Fox BA, Bzik DJ, Horii T. Differential localization of processed fragments of Plasmodium falciparum serine repeat antigen and further processing of its N-terminal 47 kDa fragment. Parasitol Int. 2002;51(4):343-52. https://doi.org/10.1016/s1383-5769(02)00042-9 55. Horii T, Shirai H, Jie L, Ishii KJ, Palacpac NQ, Tougan T, et al. Evidences of protection against blood-stage infection of Plasmodium falciparum by the novel protein vaccine SE36. Parasitol Int. 2010;59(3):380-6. https://doi.org/10.1016/j.parint.2010.05.002 56. Yagi M, Palacpac NMQ, Ito K, Oishi Y, Itagaki S, Balikagala B, et al. Antibody titres and boosting after natural malaria infection in BK-SE36 vaccine responders during a follow-up study in Uganda. Sci Rep. 2016;6(1):34363. https://doi.org/10.1038/srep34363 57. Palacpac NMQ, Ntege E, Yeka A, Balikagala B, Suzuki N, Shirai H, et al. Phase 1b Randomized Trial and Follow-Up Study in Uganda of the Blood-Stage Malaria Vaccine Candidate BK-SE36. PLoS ONE. 2013;8(5):e64073. https://doi.org/10.1371/journal.pone.0064073 58. Horii T. Decisions for the future. Hum Vaccin Immunother. 2014;10(1):7-10. https://doi.org/10.4161/hv.28053 59. Tougan T, Edula JR, Takashima E, Morita M, Shinohara M, Shinohara A, et al. Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Sci Rep. 2018;8(1):5052. https://doi.org/10.1038/s41598-018-23194-9 60. Patarroyo ME, Aza-Conde J, Moreno-Vranich A, Pabón L, Varela Y, Patarroyo MA. Far from the Madding Crowd: the Molecular Basis for Immunological Escape of Plasmodium falciparum. Curr Issues Mol Biol. 2017;22:65–78. https://doi.org/10.21775/cimb.022.065 61. Payne RO, Milne KH, Elias SC, Edwards NJ, Douglas AD, Brown RE, et al. Demonstration of the Blood-Stage Plasmodium falciparum Controlled Human Malaria Infection Model to Assess Efficacy of the P. falciparum Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01. J Infect Dis. 2016;213(11):1743-51. https://doi.org/10.1093/infdis/jiw039 62. Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, et al. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight. 2017;2(21):e96381. https://doi.org/10.1172/jci.insight.96381 63. Sheehy SH, Duncan CJA, Elias SC, Biswas S, Collins KA, O’Hara GA, et al. Phase Ia Clinical Evaluation of the Safety and Immunogenicity of the Plasmodium falciparum Blood-Stage Antigen AMA1 in ChAd63 and MVA Vaccine Vectors. Doolan DL, editor. PLoS ONE. 2012;7(2):e31208. https://doi.org/10.1371/journal.pone.0031208 64. Wong W, Huang R, Menant S, Hong Ch, Sandow JJ, Richard W, et al. Structure of Plasmodium falciparum Rh5-CyRPA-Ripr invasion complex. Nature. 2019;565(7737):118–121. https://doi.org/10.1038/s41586-018-0779-6 65. Favuzza P, Guffart E, Tamborrini M, Scherer B, Dreyer AM, Ruferet AC, et al. Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody. Elife. 2017;6:e20383. https://doi.org/10.7554/eLife.20383 66. Singh S, Soe S, Mejia J-P, Roussilhon C, Theisen M, Corradin G, et al. Identification of a conserved region of Plasmodium falciparum MSP3 targeted by biologically active antibodies to improve vaccine design. J Infect Dis. 2004;190(5):1010-8. https://doi.org/10.1086/423208 67. Soe S, Theisen M, Roussilhon C, Aye K-S, Druilhe P. Association between Protection against Clinical Malaria and Antibodies to Merozoite Surface Antigens in an Area of Hyperendemicity in Myanmar: Complementarity between Responses to Merozoite Surface Protein 3 and the 220-Kilodalton Glutamate-Rich Protein. Infect Immun. 2004;72(1):247-52. https://doi.org/10.1128/iai.72.1.247-252.2004 68. Esen M, Kremsner PG, Schleucher R, Gässler M, Imoukhuede EB, Imbault N, et al. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate. Vaccine. 2009;27(49):6862-8. https://doi.org/10.1016/j.vaccine.2009.09.011 69. Bélard S, Issifou S, Hounkpatin AB, Schaumburg F, Ngoa UA, Esen M, et al. A Randomized Controlled Phase Ib Trial of the Malaria Vaccine Candidate GMZ2 in African Children. Beeson JG, editor. PLoS ONE. 2011;6(7):e22525. https://doi.org/10.1371/journal.pone.0022525 70. Sirima SB, Mordmüller B, Milligan P, Ngoa UA, Kironde F, Atuguba F, et al. A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine. 2016;34(38):4536-42. https://doi.org/10.1016/j.vaccine.2016.07.041 71. Remarque EJ, Faber BW, Kocken CHM, Thomas AW. A Diversity-Covering Approach to Immunization with Plasmodium falciparum Apical Membrane Antigen 1 Induces Broader Allelic Recognition and Growth Inhibition Responses in Rabbits. Infect Immun. 2008;76(6):2660-70. https://doi.org/10.1128/IAI.00170-08 72. Kwenti TE, Moye AL, Wiylanyuy AB, Njunda LA, Nkuo-Akenji T. Variation in the immune responses against Plasmodium falciparum merozoite surface protein-1 and apical membrane antigen-1 in children residing in the different epidemiological strata of malaria in Cameroon. Malar J. 2017;16(1):453. https://doi.org/10.1186/s12936-017-2105-4 73. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. PNAS. 2011;108(32):13275-80. https://doi.org/10.1073/pnas.1110303108 74. Sirima SB, Durier C, Kara L, Houard S, Gansane A, Loulergue P, et al. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1-DiCo malaria vaccine adjuvanted with GLA-SE or Alhydrogel® in European and African adults: A phase 1a/1b, randomized, double-blind multi-centre trial. Vaccine. 2017;35(45):6218-27. https://doi.org/10.1016/j.vaccine.2017.09.027 75. Spiegel H, Boes A, Fendel R, Reimann A, Schillberg S, Fischer R. Immunization with the Malaria Diversity-Covering Blood-Stage Vaccine Candidate Plasmodium falciparum Apical Membrane Antigen 1 DiCo in Complex with Its Natural Ligand PfRon2 Does Not Improve the In Vitro Efficacy. Front Immunol. 2017;8. https://doi.org/10.3389/fimmu.2017.00743 76. Sagara, I., Dicko, A., Ellis, R. D., Fay, M. P., Diawara, S. I., Assadou, M. H., et al. A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. Vaccine 2009;27(23):3090–3098. https://doi.org/10.1016/j.vaccine.2009.03.014 77. Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor L. Structural Basis for the EBA-175 Erythrocyte Invasion Pathway of the Malaria Parasite Plasmodium falciparum. Cell. 2005;122(2):183-93. https://doi.org/10.1016/j.cell.2005.05.033 78. Koram KA, Adu B, Ocran J, Karikari YS, Adu-Amankwah S, Ntiri M, et al. Safety and Immunogenicity of EBA-175 RII-NG Malaria Vaccine Administered Intramuscularly in Semi-Immune Adults: A Phase 1, Double-Blinded Placebo Controlled Dosage Escalation Study. PLOS ONE. 2016;11(9):e0163066. https://doi.org/10.1371/journal.pone.0163066 79. Beeson JG, Kurtovic L, Dobaño C, Opi H, Chan J, Feng G, et al. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med. 2019;11(474):eaau1458. https://doi.org/10.1126/scitranslmed.aau1458 80. Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science. 2002;298(5601):2199–2202. https://doi.org/10.1126/science.1076071spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.spa
dc.title.translatedAdvances in the development of vaccine against malaria by Plasmodium falciparum: a literature revieweng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Revista Investig. Salud Univ. Boyacá-428.pdf910.2Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Revista Investigación en Salud Universidad de Boyacá - 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Revista Investigación en Salud Universidad de Boyacá - 2020