dc.contributor.author | Royero-Bermeo, Wendy | spa |
dc.contributor.author | Reyes Santofimio, César Mauricio | spa |
dc.contributor.author | Franky Rojas, Mabel Patricia | spa |
dc.contributor.author | Picón Jaimes, Yelson Alejandro | spa |
dc.contributor.author | Molina Franky, Jessica Stephanie | spa |
dc.date.accessioned | 2020-08-11 00:00:00 | |
dc.date.accessioned | 2022-03-08T16:19:03Z | |
dc.date.available | 2020-08-11 00:00:00 | |
dc.date.available | 2022-03-08T16:19:03Z | |
dc.date.issued | 2020-08-11 | |
dc.identifier.issn | 2389-7325 | |
dc.identifier.uri | https://repositorio.uniboyaca.edu.co/handle/uniboyaca/392 | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Boyacá | spa |
dc.rights | Revista Investigación en Salud Universidad de Boyacá - 2020 | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0 | spa |
dc.source | https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/464 | spa |
dc.subject | Malaria | spa |
dc.subject | Plasmodium falciparum | spa |
dc.subject | ligandos | spa |
dc.subject | membrana eritrocítica | spa |
dc.subject | eritrocitos | spa |
dc.subject | Malaria | eng |
dc.subject | Plasmodium falciparum | eng |
dc.subject | ligands | eng |
dc.subject | erythrocyte membrane | eng |
dc.subject | erythrocytes | eng |
dc.subject | malaria | eng |
dc.subject | Plasmodium falciparum | eng |
dc.subject | ligantes | eng |
dc.subject | membrana eritrocítica | eng |
dc.subject | eritrócitos | eng |
dc.title | Proteínas homólogas de unión a reticulocitos de Plasmodium falciparum involucradas en el proceso de invasión al eritrocito: Revisión de la literatura | spa |
dc.type | Artículo de revista | spa |
dc.type | Journal article | eng |
dc.identifier.doi | 10.24267/23897325.464 | |
dc.identifier.eissn | 2539-2018 | |
dc.identifier.url | https://doi.org/10.24267/23897325.464 | |
dc.relation.bitstream | https://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/464/542 | |
dc.relation.citationedition | Núm. 2 , Año 2020 : Revista Investigación en Salud Universidad de Boyacá | spa |
dc.relation.citationendpage | 118 | |
dc.relation.citationissue | 2 | spa |
dc.relation.citationstartpage | 100 | |
dc.relation.citationvolume | 7 | spa |
dc.relation.ispartofjournal | Revista Investigación en Salud Universidad de Boyacá | spa |
dc.relation.references | World health organization. Word malaria report 2019. 2019. Disponible en https://www.who.int/publications/i/item/9789241565721 | spa |
dc.relation.references | Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SSG, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium Knowlesi infections in human beings. Lancet. 2004; 363(9414):1017–24. https://doi.org/10.1016/S0140-6736(04)15836-4 | spa |
dc.relation.references | Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K, et al. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol. 2004; 42(12):5636–43. https://doi.org/10.1128/jcm.42.12.5636-5643.2004 | spa |
dc.relation.references | Bray RS, Garnham PC. The life-cycle of primate malaria parasites. Br Med Bull. 1982; 38(2):117–22. https://doi.org/10.1093/oxfordjournals.bmb.a071746 | spa |
dc.relation.references | Kappe SHI, Buscaglia CA, Nussenzweig V. Plasmodium sporozoite molecular cell biology. Annu Rev Cell Dev Biol. 2004; 20:29–59. https://doi.org/10.1146/annurev.cellbio.20.011603.150935 | spa |
dc.relation.references | Patarroyo ME, Patarroyo MA. Emerging Rules for Subunit-Based, Multiantigenic, Multistage Chemically Synthesized Vaccines. Acc Chem Res. 2008; 41(3):377–86. https://doi.org/10.1021/ar700120t | spa |
dc.relation.references | Harvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol. 2012; 42(6):567–73. https://doi.org/10.1016/j.ijpara.2012.02.011 | spa |
dc.relation.references | Tham W-H, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci USA. 2010; 107(40):17327–32. https://doi.org/10.1073/pnas.1008151107 | spa |
dc.relation.references | Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol. 2016; 32(4):284–95. https://doi.org/10.1016/j.pt.2015.12.007 | spa |
dc.relation.references | Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int. 2009; 58(1):29–35. https://doi.org/10.1016/j.parint.2008.09.005 | spa |
dc.relation.references | Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe. 2011; 9(1):920. https://doi.org/10.1016/j.chom.2010.12.003 | spa |
dc.relation.references | Udeinya IJ, Schmidt JA, Aikawa M, Miller LH, Green I. Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science. 1981; 213(4507):555–7. https://doi.org/10.1126/science.7017935 | spa |
dc.relation.references | Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol. 2009;39(3):371–80. https://doi.org/10.1016/j.ijpara.2008.10.006 | spa |
dc.relation.references | Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Cell. 2006; 124(4):755–66. https://doi.org/10.1016/j.cell.2006.02.006 | spa |
dc.relation.references | Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science. 2005; 309(5739):1384–7. https://doi.org/10.1126/science.1115257 | spa |
dc.relation.references | Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe. 2008; 4(1):40–51. https://doi.org/10.1016/j.chom.2008.06.001 | spa |
dc.relation.references | Taylor HM, Triglia T, Thompson J, Sajid M, Fowler R, Wickham ME, et al. Plasmodium falciparum Homologue of the Genes for Plasmodium vivax and Plasmodium yoelii Adhesive Proteins, Which Is Transcribed but Not Translated. Infect Immun. 2001; 69(6):3635–45. https://dx.doi.org/10.1128/IAI.69.6.3635-3645.2001 | spa |
dc.relation.references | Galinski MR, Xu M, Barnwell1 JW. Plasmodium vivax reticulocyte binding protein-2 (PvRBP-2) shares structural features with PvRBP-1 and the Plasmodium yoelii 235 kDa rhoptry protein family. Mol Biochem Parasitol. 2000; 108(2):257–62. https://doi.org/10.1016/s0166-6851(00)00219-x | spa |
dc.relation.references | Ogun SA, Holder AA. A high molecular mass Plasmodium yoelii rhoptry protein binds to erythrocytes. Mol Biochem Parasitol. 1996; 76(1–2):321–4. https://doi.org/10.1016/0166-6851(95)02540-5 | spa |
dc.relation.references | Gunalan K, Gao X, Liew KJL, Preiser PR. Differences in erythrocyte receptor specificity of different parts of the Plasmodium falciparum reticulocyte binding protein homologue 2a. Infect Immun. 2011;79(8):3421–30. https://doi.org/10.1128/IAI.00201-11 | spa |
dc.relation.references | Knuepfer E, Wright KE, Kumar Prajapati S, Rawlinson TA, Mohring F, Koch M, et al. Divergent roles for the RH5 complex components, CyRPA and RIPR in human-infective malaria parasites. PLoS Pathog. 2019; 15(6):e1007809. https://doi.org/10.1371/journal.ppat.1007809 | spa |
dc.relation.references | Triglia T, Tham W-H, Hodder A, Cowman AF. Reticulocyte Binding Protein Homologues Are Key Adhesins during Erythrocyte Invasion by Plasmodium Falciparum». Cellular Microbiology. Cell Microbiol. 2009; 11(11): 1671–1687. https://doi.org/10.1111/j.1462-5822.2009.01358.x | spa |
dc.relation.references | Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017; 9(2):131–55. https://doi.org/10.2217/imt-2016-0091 | spa |
dc.relation.references | Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, Jong NWM de, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLOS Pathog. 2015; 11(2):e1004670. https://doi.org/10.1371/journal.ppat.1004670 | spa |
dc.relation.references | Gao X, Yeo KP, Aw SS, Kuss C, Iyer JK, Genesan S, et al. Antibodies Targeting the PfRH1 Binding Domain Inhibit Invasion of Plasmodium falciparum Merozoites. PLOS Pathog. 2008; 4(7):e1000104. https://doi.org/10.1371/journal.ppat.1000104 | spa |
dc.relation.references | Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS, et al. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016; 40(3):343–72. https://doi.org/10.1093/femsre/fuw001 | spa |
dc.relation.references | Rayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW. A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med. 2001; 194(11):1571–81. https://doi.org/10.1084/jem.194.11.1571 | spa |
dc.relation.references | Triglia T, Duraisingh MT, Good RT, Cowman AF. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Mol Microbiol. 2005; 55(1):162–74. https://doi.org/10.1111/j.1365-2958.2004.04388.x | spa |
dc.relation.references | Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J. 2003; 22(5):1047–57. https://doi.org/10.1093/emboj/cdg096 | spa |
dc.relation.references | Rayner JC, Galinski MR, Ingravallo P, Barnwell JW. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci USA. 2000; 97(17):9648–53. https://doi.org/10.1073/pnas.160469097 | spa |
dc.relation.references | Reiling L, Richards JS, Fowkes FJI, Barry AE, Triglia T, Chokejindachai W, et al. Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. J Immunol. 2010; 185(10):6157–67. https://doi.org/10.4049/jimmunol.1001555 | spa |
dc.relation.references | Triglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF. Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun. 2001; 69(2):1084–92. https://doi.org/10.1128/IAI.69.2.1084-1092.2001 | spa |
dc.relation.references | Gaur D, Mayer DCG, Miller LH. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol. 2004; 34(13–14):1413–29. https://doi.org/10.1016/j.ijpara.2004.10.010 | spa |
dc.relation.references | Park HJ, Guariento M, Maciejewski M, Hauhart R, Tham W-H, Cowman AF, et al Using mutagenesis and structural biology to map the binding site for the Plasmodium falciparum merozoite protein PfRh4 on the human immune adherence receptor. J Biol Chem. 2014; 289(1):450–63. https://doi.org/10.1074/jbc.m113.520346 | spa |
dc.relation.references | Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, et al. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog. 2010; 6(6):e1000968. https://doi.org/10.1371/journal.ppat.1000968 | spa |
dc.relation.references | Tham W-H, Schmidt CQ, Hauhart RE, Guariento M, Tetteh-Quarcoo PB, Lopaticki S, et al. Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood. 2011; 118(7):1923–33. https://doi.org/10.1182/blood-2011-03-341305 | spa |
dc.relation.references | Salinas ND, Paing MM, Tolia NH. Critical Glycosylated Residues in Exon Three of Erythrocyte Glycophorin A Engage Plasmodium falciparum EBA-175 and Define Receptor Specificity. mBio. 2014; 5(5). https://doi.org/10.1128/mBio.01606-14 | spa |
dc.relation.references | Reid ME, Takakuwa Y, Conboy J, Tchernia G, Mohandas N. Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1. Blood. 1990; 75(11):2229–34 | spa |
dc.relation.references | Rydzak J, Kaczmarek R, Czerwinski M, Lukasiewicz J, Tyborowska J, Szewczyk B, et al. The baculovirus-expressed binding region of Plasmodium falciparum EBA-140 ligand and its glycophorin C binding specificity. PLoS ONE. 2015; 10(1):e0115437. https://doi.org/10.1371/journal.pone.0115437 | spa |
dc.relation.references | Jaskiewicz E, Peyrard T, Kaczmarek R, Zerka A, Jodlowska M, Czerwinski M, et al. The Gerbich blood group system: old knowledge, new importance. Transfus Med Rev. 2018; 32(2):111–6. https://doi.org/10.1016/j.tmrv.2018.02.004 | spa |
dc.relation.references | Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham W-H, Triglia T, et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun. 2011; 79(3):1107–17. https://doi.org/10.1128/IAI.01021-10 | spa |
dc.relation.references | Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997; 388(6639):292–5. https://doi.org/10.1038/40888 | spa |
dc.relation.references | Kaul DK, Roth EF, Nagel RL, Howard RJ, Handunnetti SM. Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood. 1991; 78(3):812–9 | spa |
dc.relation.references | Cockburn IA, Mackinnon MJ, O’Donnell A, Allen SJ, Moulds JM, Baisor M, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci USA. 2004; 101(1):272–7. https://doi.org/10.1073/pnas.0305306101 | spa |
dc.relation.references | Rodriguez M, Lustigman S, Montero E, Oksov Y, Lobo CA. PfRH5: A Novel Reticulocyte-Binding Family Homolog of Plasmodium falciparum that Binds to the Erythrocyte, and an Investigation of Its Receptor. PLOS ONE. 2008; 3(10):e3300. https://doi.org/10.1371/journal.pone.0003300 | spa |
dc.relation.references | Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D, et al. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci USA. 2015; 112(4):1179–84. https://doi.org/10.1073/pnas.1415466112 | spa |
dc.relation.references | Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham W-H, et al. An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. PLoS Pathog. 2011; 7(9):e1002199. https://doi.org/10.1371/journal.ppat.1002199 | spa |
dc.relation.references | Volz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW, et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe. 2016; 20(1):60–71. https://doi.org/10.1016/j.chom.2016.06.004 | spa |
dc.relation.references | Galaway F, Yu R, Constantinou A, Prugnolle F, Wright GJ. Resurrection of the ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum malaria in humans. PLoS Biol. 2019; 17(10):e3000490. https://dx.plos.org/10.1371/journal.pbio.3000490 | spa |
dc.relation.references | Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun. 2017; 8:14333. doi:10.1038/ncomms14333 | spa |
dc.relation.references | Ord RL, Caldeira JC, Rodriguez M, Noe A, Chackerian B, Peabody DS, et al. A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein. Malar J. 2014;13:326. https://doi.org/10.1186/1475-2875-13-326 | spa |
dc.relation.references | Imboumy-Limoukou RK, Maghendi-Nzondo S, Kouna CL, Bounaadja L, Mbang S, Biteghe JC, et al. Immunoglobulin response to the low polymorphic Pf113 antigen in children from Lastoursville, South-East of Gabon. Acta Trop. 2016; 163:149–56. https://doi.org/10.1016/j.actatropica.2016.08.014 | spa |
dc.relation.references | Wright KE, Hjerrild KA, Bartlett J, Douglas AD, Jin J, Brown RE, et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature. 2014; 515(7527):427–30. https://doi.org/10.1038/nature13715 | spa |
dc.relation.references | Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016 ;159(5):481–90. https://doi.org/10.1093/jb/mvv127 | spa |
dc.relation.references | Wanaguru M, Liu W, Hahn BH, Rayner JC, Wright GJ. RH5–Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc Natl Acad Sci USA. 2013; 110(51):20735–40. https://doi.org/10.1073/pnas.1320771110 | spa |
dc.relation.references | Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011; 480(7378):534–7. https://doi.org/10.1038/nature10606 | spa |
dc.relation.references | Zenonos ZA, Dummler SK, Müller-Sienerth N, Chen J, Preiser PR, Rayner JC, et al. Basigin is a druggable target for host-oriented antimalarial interventions. J Exp Med. 2015; 212(8):1145–51. https://doi.org/10.1084/jem.20150032 | spa |
dc.relation.references | Wong W, Huang R, Menant S, Hong C, Sandow JJ, Birkinshaw RW, et al. Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. Nature. 2019; 565(7737):118–21. https://doi.org/10.1038/s41586-018-0779-6 | spa |
dc.relation.references | Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA, et al. Targeting Sialic Acid Dependent and Independent Pathways of Invasion in Plasmodium falciparum. PLOS ONE. 2012; 7(1):e30251. https://doi.org/10.1371/journal.pone.0030251 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.creativecommons | Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. | spa |
dc.title.translated | Plasmodium falciparum reticulocyte-binding homologous proteins involved in the process of erythrocyte invasion: Literature review | eng |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREV | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |