Mostrar el registro sencillo del ítem

dc.contributor.authorRoyero-Bermeo, Wendyspa
dc.contributor.authorReyes Santofimio, César Mauriciospa
dc.contributor.authorFranky Rojas, Mabel Patriciaspa
dc.contributor.authorPicón Jaimes, Yelson Alejandrospa
dc.contributor.authorMolina Franky, Jessica Stephaniespa
dc.date.accessioned2020-08-11 00:00:00
dc.date.accessioned2022-03-08T16:19:03Z
dc.date.available2020-08-11 00:00:00
dc.date.available2022-03-08T16:19:03Z
dc.date.issued2020-08-11
dc.identifier.issn2389-7325
dc.identifier.urihttps://repositorio.uniboyaca.edu.co/handle/uniboyaca/392
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Boyacáspa
dc.rightsRevista Investigación en Salud Universidad de Boyacá - 2020spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0spa
dc.sourcehttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/464spa
dc.subjectMalariaspa
dc.subjectPlasmodium falciparumspa
dc.subjectligandosspa
dc.subjectmembrana eritrocíticaspa
dc.subjecteritrocitosspa
dc.subjectMalariaeng
dc.subjectPlasmodium falciparumeng
dc.subjectligandseng
dc.subjecterythrocyte membraneeng
dc.subjecterythrocyteseng
dc.subjectmalariaeng
dc.subjectPlasmodium falciparumeng
dc.subjectliganteseng
dc.subjectmembrana eritrocíticaeng
dc.subjecteritrócitoseng
dc.titleProteínas homólogas de unión a reticulocitos de Plasmodium falciparum involucradas en el proceso de invasión al eritrocito: Revisión de la literaturaspa
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.identifier.doi10.24267/23897325.464
dc.identifier.eissn2539-2018
dc.identifier.urlhttps://doi.org/10.24267/23897325.464
dc.relation.bitstreamhttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/464/542
dc.relation.citationeditionNúm. 2 , Año 2020 : Revista Investigación en Salud Universidad de Boyacáspa
dc.relation.citationendpage118
dc.relation.citationissue2spa
dc.relation.citationstartpage100
dc.relation.citationvolume7spa
dc.relation.ispartofjournalRevista Investigación en Salud Universidad de Boyacáspa
dc.relation.referencesWorld health organization. Word malaria report 2019. 2019. Disponible en https://www.who.int/publications/i/item/9789241565721spa
dc.relation.referencesSingh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SSG, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium Knowlesi infections in human beings. Lancet. 2004; 363(9414):1017–24. https://doi.org/10.1016/S0140-6736(04)15836-4spa
dc.relation.referencesRougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, Jaton K, et al. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol. 2004; 42(12):5636–43. https://doi.org/10.1128/jcm.42.12.5636-5643.2004spa
dc.relation.referencesBray RS, Garnham PC. The life-cycle of primate malaria parasites. Br Med Bull. 1982; 38(2):117–22. https://doi.org/10.1093/oxfordjournals.bmb.a071746spa
dc.relation.referencesKappe SHI, Buscaglia CA, Nussenzweig V. Plasmodium sporozoite molecular cell biology. Annu Rev Cell Dev Biol. 2004; 20:29–59. https://doi.org/10.1146/annurev.cellbio.20.011603.150935spa
dc.relation.referencesPatarroyo ME, Patarroyo MA. Emerging Rules for Subunit-Based, Multiantigenic, Multistage Chemically Synthesized Vaccines. Acc Chem Res. 2008; 41(3):377–86. https://doi.org/10.1021/ar700120tspa
dc.relation.referencesHarvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol. 2012; 42(6):567–73. https://doi.org/10.1016/j.ijpara.2012.02.011spa
dc.relation.referencesTham W-H, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci USA. 2010; 107(40):17327–32. https://doi.org/10.1073/pnas.1008151107spa
dc.relation.referencesWeiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol. 2016; 32(4):284–95. https://doi.org/10.1016/j.pt.2015.12.007spa
dc.relation.referencesCao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int. 2009; 58(1):29–35. https://doi.org/10.1016/j.parint.2008.09.005spa
dc.relation.referencesRiglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe. 2011; 9(1):920. https://doi.org/10.1016/j.chom.2010.12.003spa
dc.relation.referencesUdeinya IJ, Schmidt JA, Aikawa M, Miller LH, Green I. Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science. 1981; 213(4507):555–7. https://doi.org/10.1126/science.7017935spa
dc.relation.referencesBaum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol. 2009;39(3):371–80. https://doi.org/10.1016/j.ijpara.2008.10.006spa
dc.relation.referencesCowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Cell. 2006; 124(4):755–66. https://doi.org/10.1016/j.cell.2006.02.006spa
dc.relation.referencesStubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science. 2005; 309(5739):1384–7. https://doi.org/10.1126/science.1115257spa
dc.relation.referencesHayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe. 2008; 4(1):40–51. https://doi.org/10.1016/j.chom.2008.06.001spa
dc.relation.referencesTaylor HM, Triglia T, Thompson J, Sajid M, Fowler R, Wickham ME, et al. Plasmodium falciparum Homologue of the Genes for Plasmodium vivax and Plasmodium yoelii Adhesive Proteins, Which Is Transcribed but Not Translated. Infect Immun. 2001; 69(6):3635–45. https://dx.doi.org/10.1128/IAI.69.6.3635-3645.2001spa
dc.relation.referencesGalinski MR, Xu M, Barnwell1 JW. Plasmodium vivax reticulocyte binding protein-2 (PvRBP-2) shares structural features with PvRBP-1 and the Plasmodium yoelii 235 kDa rhoptry protein family. Mol Biochem Parasitol. 2000; 108(2):257–62. https://doi.org/10.1016/s0166-6851(00)00219-xspa
dc.relation.referencesOgun SA, Holder AA. A high molecular mass Plasmodium yoelii rhoptry protein binds to erythrocytes. Mol Biochem Parasitol. 1996; 76(1–2):321–4. https://doi.org/10.1016/0166-6851(95)02540-5spa
dc.relation.referencesGunalan K, Gao X, Liew KJL, Preiser PR. Differences in erythrocyte receptor specificity of different parts of the Plasmodium falciparum reticulocyte binding protein homologue 2a. Infect Immun. 2011;79(8):3421–30. https://doi.org/10.1128/IAI.00201-11spa
dc.relation.referencesKnuepfer E, Wright KE, Kumar Prajapati S, Rawlinson TA, Mohring F, Koch M, et al. Divergent roles for the RH5 complex components, CyRPA and RIPR in human-infective malaria parasites. PLoS Pathog. 2019; 15(6):e1007809. https://doi.org/10.1371/journal.ppat.1007809spa
dc.relation.referencesTriglia T, Tham W-H, Hodder A, Cowman AF. Reticulocyte Binding Protein Homologues Are Key Adhesins during Erythrocyte Invasion by Plasmodium Falciparum». Cellular Microbiology. Cell Microbiol. 2009; 11(11): 1671–1687. https://doi.org/10.1111/j.1462-5822.2009.01358.xspa
dc.relation.referencesPatarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy. 2017; 9(2):131–55. https://doi.org/10.2217/imt-2016-0091spa
dc.relation.referencesWeiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, Jong NWM de, Harvey KL, et al. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes. PLOS Pathog. 2015; 11(2):e1004670. https://doi.org/10.1371/journal.ppat.1004670spa
dc.relation.referencesGao X, Yeo KP, Aw SS, Kuss C, Iyer JK, Genesan S, et al. Antibodies Targeting the PfRH1 Binding Domain Inhibit Invasion of Plasmodium falciparum Merozoites. PLOS Pathog. 2008; 4(7):e1000104. https://doi.org/10.1371/journal.ppat.1000104spa
dc.relation.referencesBeeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS, et al. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016; 40(3):343–72. https://doi.org/10.1093/femsre/fuw001spa
dc.relation.referencesRayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW. A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med. 2001; 194(11):1571–81. https://doi.org/10.1084/jem.194.11.1571spa
dc.relation.referencesTriglia T, Duraisingh MT, Good RT, Cowman AF. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Mol Microbiol. 2005; 55(1):162–74. https://doi.org/10.1111/j.1365-2958.2004.04388.xspa
dc.relation.referencesDuraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, et al. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J. 2003; 22(5):1047–57. https://doi.org/10.1093/emboj/cdg096spa
dc.relation.referencesRayner JC, Galinski MR, Ingravallo P, Barnwell JW. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proc Natl Acad Sci USA. 2000; 97(17):9648–53. https://doi.org/10.1073/pnas.160469097spa
dc.relation.referencesReiling L, Richards JS, Fowkes FJI, Barry AE, Triglia T, Chokejindachai W, et al. Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. J Immunol. 2010; 185(10):6157–67. https://doi.org/10.4049/jimmunol.1001555spa
dc.relation.referencesTriglia T, Thompson J, Caruana SR, Delorenzi M, Speed T, Cowman AF. Identification of proteins from Plasmodium falciparum that are homologous to reticulocyte binding proteins in Plasmodium vivax. Infect Immun. 2001; 69(2):1084–92. https://doi.org/10.1128/IAI.69.2.1084-1092.2001spa
dc.relation.referencesGaur D, Mayer DCG, Miller LH. Parasite ligand-host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol. 2004; 34(13–14):1413–29. https://doi.org/10.1016/j.ijpara.2004.10.010spa
dc.relation.referencesPark HJ, Guariento M, Maciejewski M, Hauhart R, Tham W-H, Cowman AF, et al Using mutagenesis and structural biology to map the binding site for the Plasmodium falciparum merozoite protein PfRh4 on the human immune adherence receptor. J Biol Chem. 2014; 289(1):450–63. https://doi.org/10.1074/jbc.m113.520346spa
dc.relation.referencesSpadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, et al. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog. 2010; 6(6):e1000968. https://doi.org/10.1371/journal.ppat.1000968spa
dc.relation.referencesTham W-H, Schmidt CQ, Hauhart RE, Guariento M, Tetteh-Quarcoo PB, Lopaticki S, et al. Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood. 2011; 118(7):1923–33. https://doi.org/10.1182/blood-2011-03-341305spa
dc.relation.referencesSalinas ND, Paing MM, Tolia NH. Critical Glycosylated Residues in Exon Three of Erythrocyte Glycophorin A Engage Plasmodium falciparum EBA-175 and Define Receptor Specificity. mBio. 2014; 5(5). https://doi.org/10.1128/mBio.01606-14spa
dc.relation.referencesReid ME, Takakuwa Y, Conboy J, Tchernia G, Mohandas N. Glycophorin C content of human erythrocyte membrane is regulated by protein 4.1. Blood. 1990; 75(11):2229–34spa
dc.relation.referencesRydzak J, Kaczmarek R, Czerwinski M, Lukasiewicz J, Tyborowska J, Szewczyk B, et al. The baculovirus-expressed binding region of Plasmodium falciparum EBA-140 ligand and its glycophorin C binding specificity. PLoS ONE. 2015; 10(1):e0115437. https://doi.org/10.1371/journal.pone.0115437spa
dc.relation.referencesJaskiewicz E, Peyrard T, Kaczmarek R, Zerka A, Jodlowska M, Czerwinski M, et al. The Gerbich blood group system: old knowledge, new importance. Transfus Med Rev. 2018; 32(2):111–6. https://doi.org/10.1016/j.tmrv.2018.02.004spa
dc.relation.referencesLopaticki S, Maier AG, Thompson J, Wilson DW, Tham W-H, Triglia T, et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun. 2011; 79(3):1107–17. https://doi.org/10.1128/IAI.01021-10spa
dc.relation.referencesRowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997; 388(6639):292–5. https://doi.org/10.1038/40888spa
dc.relation.referencesKaul DK, Roth EF, Nagel RL, Howard RJ, Handunnetti SM. Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood. 1991; 78(3):812–9spa
dc.relation.referencesCockburn IA, Mackinnon MJ, O’Donnell A, Allen SJ, Moulds JM, Baisor M, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci USA. 2004; 101(1):272–7. https://doi.org/10.1073/pnas.0305306101spa
dc.relation.referencesRodriguez M, Lustigman S, Montero E, Oksov Y, Lobo CA. PfRH5: A Novel Reticulocyte-Binding Family Homolog of Plasmodium falciparum that Binds to the Erythrocyte, and an Investigation of Its Receptor. PLOS ONE. 2008; 3(10):e3300. https://doi.org/10.1371/journal.pone.0003300spa
dc.relation.referencesReddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D, et al. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci USA. 2015; 112(4):1179–84. https://doi.org/10.1073/pnas.1415466112spa
dc.relation.referencesChen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham W-H, et al. An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. PLoS Pathog. 2011; 7(9):e1002199. https://doi.org/10.1371/journal.ppat.1002199spa
dc.relation.referencesVolz JC, Yap A, Sisquella X, Thompson JK, Lim NTY, Whitehead LW, et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe. 2016; 20(1):60–71. https://doi.org/10.1016/j.chom.2016.06.004spa
dc.relation.referencesGalaway F, Yu R, Constantinou A, Prugnolle F, Wright GJ. Resurrection of the ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum malaria in humans. PLoS Biol. 2019; 17(10):e3000490. https://dx.plos.org/10.1371/journal.pbio.3000490spa
dc.relation.referencesGalaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun. 2017; 8:14333. doi:10.1038/ncomms14333spa
dc.relation.referencesOrd RL, Caldeira JC, Rodriguez M, Noe A, Chackerian B, Peabody DS, et al. A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein. Malar J. 2014;13:326. https://doi.org/10.1186/1475-2875-13-326spa
dc.relation.referencesImboumy-Limoukou RK, Maghendi-Nzondo S, Kouna CL, Bounaadja L, Mbang S, Biteghe JC, et al. Immunoglobulin response to the low polymorphic Pf113 antigen in children from Lastoursville, South-East of Gabon. Acta Trop. 2016; 163:149–56. https://doi.org/10.1016/j.actatropica.2016.08.014spa
dc.relation.referencesWright KE, Hjerrild KA, Bartlett J, Douglas AD, Jin J, Brown RE, et al. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature. 2014; 515(7527):427–30. https://doi.org/10.1038/nature13715spa
dc.relation.referencesMuramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016 ;159(5):481–90. https://doi.org/10.1093/jb/mvv127spa
dc.relation.referencesWanaguru M, Liu W, Hahn BH, Rayner JC, Wright GJ. RH5–Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc Natl Acad Sci USA. 2013; 110(51):20735–40. https://doi.org/10.1073/pnas.1320771110spa
dc.relation.referencesCrosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011; 480(7378):534–7. https://doi.org/10.1038/nature10606spa
dc.relation.referencesZenonos ZA, Dummler SK, Müller-Sienerth N, Chen J, Preiser PR, Rayner JC, et al. Basigin is a druggable target for host-oriented antimalarial interventions. J Exp Med. 2015; 212(8):1145–51. https://doi.org/10.1084/jem.20150032spa
dc.relation.referencesWong W, Huang R, Menant S, Hong C, Sandow JJ, Birkinshaw RW, et al. Structure of Plasmodium falciparum Rh5–CyRPA–Ripr invasion complex. Nature. 2019; 565(7737):118–21. https://doi.org/10.1038/s41586-018-0779-6spa
dc.relation.referencesOrd RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA, et al. Targeting Sialic Acid Dependent and Independent Pathways of Invasion in Plasmodium falciparum. PLOS ONE. 2012; 7(1):e30251. https://doi.org/10.1371/journal.pone.0030251spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.spa
dc.title.translatedPlasmodium falciparum reticulocyte-binding homologous proteins involved in the process of erythrocyte invasion: Literature revieweng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Revista Investig. Salud Univ. Boyacá-464.pdf496.6Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Revista Investigación en Salud Universidad de Boyacá - 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Revista Investigación en Salud Universidad de Boyacá - 2020