Show simple item record

dc.contributor.authorCuy Chaparro, Laura Esperanzaspa
dc.contributor.authorCamargo Mancipe, Annyspa
dc.contributor.authorGómez Rodríguez, Alida Marcelaspa
dc.contributor.authorReyes Santofimio, Césarspa
dc.contributor.authorMoreno Pérez, Darwin Andrésspa
dc.date.accessioned2021-02-05 00:00:00
dc.date.accessioned2022-03-08T16:19:04Z
dc.date.available2021-02-05 00:00:00
dc.date.available2022-03-08T16:19:04Z
dc.date.issued2021-02-05
dc.identifier.issn2389-7325
dc.identifier.urihttps://repositorio.uniboyaca.edu.co/handle/uniboyaca/394
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Boyacáspa
dc.rightsRevista Investigación en Salud Universidad de Boyacá - 2021spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0spa
dc.sourcehttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/475spa
dc.subjectBabesia bovisspa
dc.subjectBabesiosisspa
dc.subjectinteracciones huésped-parásitospa
dc.subjectproteínasspa
dc.subjectcontrol de infecciónspa
dc.subjectBabesia boviseng
dc.subjectbabesiosiseng
dc.subjecthost-parasite interactionseng
dc.subjectproteinseng
dc.subjectinfection controleng
dc.subjectBabesia boviseng
dc.subjectbabesioseeng
dc.subjectinterações parasita-hospedeiroeng
dc.subjectproteínaseng
dc.subjectcontrole de infecçãoeng
dc.titleProteínas importantes para la invasión de Babesia bovis a las células huéspedspa
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.identifier.doi10.24267/23897325.475
dc.identifier.eissn2539-2018
dc.identifier.urlhttps://doi.org/10.24267/23897325.475
dc.relation.bitstreamhttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/475/552
dc.relation.citationeditionNúm. 1 , Año 2021 : Revista Investigación en Salud Universidad de Boyacáspa
dc.relation.citationendpage90
dc.relation.citationissue1spa
dc.relation.citationstartpage75
dc.relation.citationvolume8spa
dc.relation.ispartofjournalRevista Investigación en Salud Universidad de Boyacáspa
dc.relation.referencesBock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(7):S247-69. https://doi.org/10.1017/S0031182004005190spa
dc.relation.referencesLew-Tabor AE, Rodriguez ValleM. A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick-Borne Dis. 2016;7(4):573-85. https://doi.org/10.1016/j.ttbdis.2015.12.012spa
dc.relation.referencesHunfeld K, Hildebrandt A, Gray J. Babesiosis: Recent insights into an ancient disease. Int J Parasitol. 2008;38(11):1219-37. https://doi.org/10.1016/j.ijpara.2008.03.001.spa
dc.relation.referencesSuarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180(1-2):109-25. https://doi.org/10.1016/j.vetpar.2011.05.032.spa
dc.relation.referencesIshizaki T, Sivakumar T, Hayashida K, Tuvshintulga B, Igarashi I, Yokoyama N. RBC invasion and invasion-inhibition assays using free merozoites isolated after cold treatment of Babesia bovis in vitro culture. Exp Parasitol. 2016;166:10-5. https://doi.org/10.1016/j.exppara.2016.03.010.spa
dc.relation.referencesNava A, Venzal J, González-Acuña D, Martins T, Guglielmone A. Ticks of the Southern Cone of America. Diagnosis, Distribution, and Hosts with Taxonomy, Ecology and Sanitary Importance. Academic Press.2017. 372.spa
dc.relation.referencesMartinsen ES, Perkins SL, Schall JJ. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol. 2008;47(1):261-73. https://doi.org/10.1016/j.ympev.2007.11.012.spa
dc.relation.referencesLobo CA, Rodriguez M, Cursino-Santos JR. Babesia and red cell invasion: Curr Opin Hematol. 2012;19(3):170-5. https://doi.org/10.1097/moh.0b013e328352245a.spa
dc.relation.referencesChauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40(2):37. https://doi.org/10.1051/vetres/2009020.spa
dc.relation.referencesHidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, etal. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized cattle. Parasit Vectors. 2018;11(1):575. https://doi.org/10.1186/s13071-018-3164-2spa
dc.relation.referencesKwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. A widespread coral-infecting apicomplexan contains a plastid encoding chlorophyll biosynthesis. bioRxiv. 2018; https://doi.org/10.1101/391565spa
dc.relation.referencesDubremetz JF, Garcia-Réguet N, Conseil V, Fourmaux MN. Apical organelles and host-cell invasion by Apicomplexa. Int J Parasitol. 1998;28(7):1007-13. https://doi.org/10.1016/S0020-7519(98)00076-9.spa
dc.relation.referencesYokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol. 2006;138(1-2):22-32. https://doi.org/10.1016/j.vetpar.2006.01.037.spa
dc.relation.referencesBargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog. septiembre de 2014;10(9):e1004273. https://doi.org/10.1371/journal.ppat.1004273.spa
dc.relation.referencesProellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol.2010;26(6):297-304. https://doi.org/10.1016/j.pt.2010.02.012.spa
dc.relation.referencesTyler JS, Treeck M, Boothroyd JC. Focus on the ringleader: the role of AMA1 in apicomplexan invasion and replication. Trends Parasitol. 2011;27(9):410-20. https://doi.org/10.1016/j.pt.2011.04.002.spa
dc.relation.referencesBradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, etal. Proteomic Analysis of Rhoptry Organelles Reveals Many Novel Constituents for Host-Parasite Interactions in Toxoplasma gondii. J Biol Chem. 2005;280(40):34245-58. https://doi.org/10.1074/jbc.M504158200.spa
dc.relation.referencesMorrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev MMBR. 2002;66(1):21-38.https://doi.org/10.1128/MMBR.66.1.21-38.2002.spa
dc.relation.referencesPortman N, Foster C, Walker G, Šlapeta J. Evidence of intraflagellar transport and apical complex formation in a free-living relative of the apicomplexa. Eukaryot Cell. 2014;13(1):10-20. https://doi.org/10.1128/EC.00155-13.spa
dc.relation.referencesCarruthers VB, Sibley LD. Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol. 1997;73(2):114-23.spa
dc.relation.referencesBradley PJ, Sibley LD. Rhoptries: an arsenal of secreted virulence factors. Curr Opin Microbiol. 2007;10(6):582-7. https://doi.org/10.1016/j.mib.2007.09.013.spa
dc.relation.referencesWoehlbier U, Epp C, Hackett F, Blackman MJ, Bujard H. Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion. Malar J. 2010;9:77. https://doi.org/10.1186/1475-2875-9-77.spa
dc.relation.referencesSrinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, etal. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc NatlAcad Sci U S A. 2011;108(32):13275-80. https://doi.org/10.1073/pnas.1110303108.spa
dc.relation.referencesLamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, etal. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog. 2011;7(2):e1001276. https://doi.org/10.1371/journal.ppat.1001276.spa
dc.relation.referencesLebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H, etal. The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol. 2005;7(12):1823-33. https://doi.org/10.1111/j.1462-5822.2005.00646.x.spa
dc.relation.referencesShen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites.Curr Opin Microbiol. 2012;15(4):449-55. https://doi.org/10.1016/j.mib.2012.02.007.spa
dc.relation.referencesBesteiro S, Michelin A, Poncet J,Dubremetz J-F, Lebrun M. Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion.PLoS Pathog. 2009;5(2):e1000309. https://doi.org/10.1371/journal.ppat.1000309.spa
dc.relation.referencesBesteiro S, Dubremetz J-F, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion: The moving junction of apicomplexan parasites. Cell Microbiol. 2011;13(6):797-805. https://doi.org/10.1111/j.1462-5822.2011.01597.x.spa
dc.relation.referencesHines S, Mcelwain T, Buening G, Palmer G. Molecular characterization of Babesia bovis merozoite surface proteins bearing epitopes immunodominant in protected cattle. Mol Biochem Parasitol. 1989;37(1):1-9. https://doi.org/10.1016/0166-6851(89)90096-0.spa
dc.relation.referencesGoffWL, Davis WC, Palmer GH, McElwain TF, Johnson WC, Bailey JF, etal. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun. 1988;56(9):2363-8. https://doi.org/10.1128/iai.56.9.2363-2368.1988spa
dc.relation.referencesJohnson WC, Taus NS, Reif KE, Bohaliga GA, Kappmeyer LS, Ueti MW. Analysis of Stage-Specific Protein Expression during Babesia Bovis Development within Female Rhipicephalus Microplus. Journalof proteome research. 2017;16(3):1327-38.https://doi.org/10.1021/acs.jproteome.6b00947.spa
dc.relation.referencesHines SA, Palmer GH, Jasmer DP, Goff WL, McElwain TF. Immunization of cattle with recombinant Babesia bovis merozoite surface antigen-1. Infect Immun. 1995;63(1):349-52. https://doi.org/10.1128/iai.63.1.349-352.1995spa
dc.relation.referencesHines SA, Palmer GH, Jasmer DP, McGuire TC, McElwain TF. Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Mol Biochem Parasitol.1992;55(1-2):85-94. https://doi.org/10.1016/0166-6851(92)90129-8.spa
dc.relation.referencesCarcy B, Précigout E, Schetters T, Gorenflot A. Genetic basis for GPI-anchor merozoite surface antigen polymorphism of Babesia and resulting antigenic diversity. Vet Parasitol. 2006;138(1-2):33-49. https://doi.org/10.1016/j.vetpar.2006.01.038.spa
dc.relation.referencesDeitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493-503. https://doi.org/10.1038/nrmicro2145.spa
dc.relation.referencesGenis AD, Mosqueda JJ, Borgonio VM, Falcón A, Alvarez A, Camacho M, etal. Phylogenetic analysis of Mexican Babesia bovis isolates using msa and ssrRNA gene sequences. Ann N Y Acad Sci. 2008;1149:121-5. https://doi.org/10.1196/annals.1428.070.spa
dc.relation.referencesLeroithT, Brayton KA, Molloy JB, Bock RE, Hines SA, Lew AE, etal. Sequence variation and immunologic cross-reactivity among Babesia bovis merozoite surface antigen 1 proteins from vaccine strains and vaccine breakthrough isolates. Infect Immun. 2005;73(9):5388-94. https://doi.org/10.1128/IAI.73.9.5388-5394.2005.spa
dc.relation.referencesTattiyapong M, Sivakumar T, Takemae H, Simking P, Jittapalapong S, Igarashi I, etal. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2016;41:255-61. https://doi.org/10.1016/j.meegid.2016.04.021.spa
dc.relation.referencesSivakumar T, Okubo K, Igarashi I, de Silva WK, Kothalawala H, Silva SSP, etal. Genetic diversity of merozoite surface antigens in Babesia bovis detected from Sri Lankan cattle. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2013;19:134-40. https://doi.org/10.1016/j.meegid.2013.07.001.spa
dc.relation.referencesSuarez CE, Florin-Christensen M, Hines SA, Palmer GH, Brown WC, McElwain TF. Characterization of Allelic Variation in the Babesia bovis Merozoite Surface Antigen 1 (MSA-1) Locus and Identification of a Cross-Reactive Inhibition-Sensitive MSA-1 Epitope. Infect Immun. 2000;68(12):6865-70. https://doi.org/10.1128/IAI.68.12.6865-6870.2000.spa
dc.relation.referencesMosqueda J.McElwainTF. Stiller D. Palmer GH. Babesia bovis Merozoite Surface Antigen 1 and Rhoptry-Associated Protein 1 Are Expressed in Sporozoites, and Specific Antibodies Inhibit Sporozoite Attachment to Erythrocytes. Infect Immun. 2002;70(3):1599-603. https://doi.org/10.1128/IAI.70.3.1599-1603.2002.spa
dc.relation.referencesTriglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, etal. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000;38(4):706-18. https://doi.org/10.1046/j.1365-2958.2000.02175.x.spa
dc.relation.referencesHodder AN, Crewther PE, Anders RF. Specificity of the Protective Antibody Response to Apical Membrane Antigen 1. Infect Immun. 2001;69(5):3286-94. https://doi.org/10.1128/IAI.69.5.3286-3294.2001. 44. Hehl AB, Lekutis C, Grigg ME, Bradley PJ, Dubremetz J-F, Ortega-Barria E, etal. Toxoplasma gondii Homologue ofPlasmodium Apical Membrane Antigen 1 Is Involved in Invasionof Host Cells. Infect Immun. 2000;68(12):7078-86. https://doi.org/10.1128/IAI.68.12.7078-7086.2000.spa
dc.relation.referencesMontero E, Rodriguez M, Oksov Y, Lobo CA. Babesia divergens Apical Membrane Antigen 1 and Its Interaction with the Human Red Blood Cell. Infect Immun. 2009;77(11):4783-93. https://doi.org/10.1128/IAI.00969-08.spa
dc.relation.referencesSalama AA, Terkawi MA, Kawai S, AbouLaila M, Nayel M, Mousa A, etal. Specific antibody to a conserved region of Babesia apical membrane antigen-1 inhibited the invasion of B. bovis into the erythrocyte. Exp Parasitol. 2013;135(3):623-8. https://doi.org/10.1016/j.exppara.2013.09.017.spa
dc.relation.referencesRemarque EJ, Faber BW, Kocken CHM, Thomas AW. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 2008;24(2):74-84. https://doi.org/10.1016/j.pt.2007.12.002.spa
dc.relation.referencesDelgadillo RF, Parker ML, Lebrun M, Boulanger MJ, Douguet D. Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PloS One. 2016;11(1):e0144764. https://doi.org/10.1371/journal.pone.0144764.spa
dc.relation.referencesTyler JS, Boothroyd JC. The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PLoS Pathog. 2011;7(2):e1001282. https://doi.org/10.1371/journal.ppat.1001282.spa
dc.relation.referencesRittipornlertrak A, Nambooppha B, Simking P, Punyapornwithaya V, Tiwananthagorn S, Jittapalapong S, etal. Low levels of genetic diversity associated with evidence of negative selection on the Babesia bovis apical membrane antigen 1 from parasite populations in Thailand. Infect Genet Evol. 2017;54:447-54. https://doi.org/10.1016/j.meegid.2017.08.009.spa
dc.relation.referencesPolley SD, Conway DJ. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics. 2001;158(4):1505-12.spa
dc.relation.referencesMital J, Meissner M, Soldati D, Ward GE. Conditional expression of Toxoplasma gondii apical membrane antigen-1 (TgAMA1) demonstrates that TgAMA1 plays a critical role in hostcell invasion. Mol Biol Cell. 2005;16(9):4341-49. https://doi.org/10.1091/mbc.e05-04-0281.spa
dc.relation.referencesYap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW, etal. Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol. 2014;16(5):642-56. https://doi.org/10.1111/cmi.12287.spa
dc.relation.referencesBilgic HB, Hacilarlioglu S, Bakirci S, Kose O, Unlu AH, Aksulu A, etal. Comparison of protectiveness of recombinant Babesia ovis apical membrane antigen 1 and B. ovis-infected cell line as vaccines against ovine babesiosis. Ticks Tick-Borne Dis. 2020;11(1):101280. https://doi.org/10.1016/j.ttbdis.2019.101280.spa
dc.relation.referencesGaffar FR, Yatsuda AP, Franssen FFJ, de Vries E. Erythrocyte Invasion by Babesia bovis Merozoites Is Inhibited by Polyclonal Antisera Directed against Peptides Derived from a Homologue of Plasmodium falciparum Apical Membrane Antigen 1. Infect Immun. 2004;72(5):2947-55. https://doi.org/10.1128/IAI.72.5.2947-2955.2004.spa
dc.relation.referencesGardiner DL, Spielmann T, Dixon MWA, Hawthorne PL, Ortega MR, Anderson KL, etal. CLAG9 is located in the rhoptries of Plasmodium falciparum. Parasitol Res. 2004;93(1):64-7. https://doi.org/10.1007/s00436-004-1098-4.spa
dc.relation.referencesKaneko O, Tsuboi T, Ling IT, Howell S, Shirano M, Tachibana M, etal. The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Mol Biochem Parasitol. 2001;118(2):223-31. https://doi.org/10.1016/s0166-6851(01)00391-7.spa
dc.relation.referencesCao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, etal. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol Int. 2009;58(1):29-35. https://doi.org/10.1016/j.parint.2008.09.005.spa
dc.relation.referencesMorahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KL. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. Exp Parasitol. 2009;122(4):280-8. https://doi.org/10.1016/j.exppara.2009.04.013.spa
dc.relation.referencesMutungi JK, Yahata K, Sakaguchi M, Kaneko O. Expression and localization of rhoptry neck protein 5 in merozoites and sporozoites of Plasmodium yoelii. Parasitol Int. 2014;63(6):794-801. https://doi.org/10.1016/j.parint.2014.07.013.spa
dc.relation.referencesStraub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog. 2011;7(3):e1002007. https://doi.org/10.1371/journal.ppat.1002007.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.spa
dc.title.translatedImportant proteins for Babesia bovis invasion to host cellseng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Files in this item

FilesSizeFormatView
Revista Investig. Salud Univ. Boyacá-475.pdf350.0Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record

Revista Investigación en Salud Universidad de Boyacá - 2021
Except where otherwise noted, this item's license is described as Revista Investigación en Salud Universidad de Boyacá - 2021