Mostrar el registro sencillo del ítem

dc.contributor.authorGómez Rodríguez, Alida Marcelaspa
dc.contributor.authorCuy-Chaparro, Laura Esperanzaspa
dc.contributor.authorCamargo Marcipe, Anny Jinethspa
dc.date.accessioned2021-07-30 00:00:00
dc.date.accessioned2022-03-08T16:19:04Z
dc.date.available2021-07-30 00:00:00
dc.date.available2022-03-08T16:19:04Z
dc.date.issued2021-07-30
dc.identifier.issn2389-7325
dc.identifier.urihttps://repositorio.uniboyaca.edu.co/handle/uniboyaca/395
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Boyacáspa
dc.rightsRevista Investigación en Salud Universidad de Boyacá - 2021spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0spa
dc.sourcehttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/view/484spa
dc.subjectantígenosspa
dc.subjectexpresión génicaspa
dc.subjectmalariaspa
dc.subjectPlasmodium falciparumspa
dc.subjectPlasmodium vivaxspa
dc.subjectantigenseng
dc.subjectmalariaeng
dc.subjectgene expressioneng
dc.subjectPlasmodium falciparumeng
dc.subjectPlasmodium vivaxeng
dc.titleSistemas de expresión de proteínas recombinantes para el análisis funcional de antígenos de Plasmodium falciparum y Plasmodium vivax: una revisiónspa
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.identifier.doi10.24267/23897325.484
dc.identifier.eissn2539-2018
dc.identifier.urlhttps://doi.org/10.24267/23897325.484
dc.relation.bitstreamhttps://revistasdigitales.uniboyaca.edu.co/index.php/rs/article/download/484/582
dc.relation.citationeditionNúm. 2 , Año 2021 : Revista Investigación en Salud Universidad de Boyacáspa
dc.relation.citationissue2spa
dc.relation.citationvolume8spa
dc.relation.ispartofjournalRevista Investigación en Salud Universidad de Boyacáspa
dc.relation.referencesWorld Health Organization. Word Malaria Report 2019. Report. World Health Organization 2019.spa
dc.relation.referencesCowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. 2016;167(3):610-24. https://doi.org/10.1016/j.cell.2016.07.055spa
dc.relation.referencesGething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA, et al. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis. 2012;6(9):e1814. https://doi.org/10.1371/journal.pntd.0001814spa
dc.relation.referencesPrice RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007;77(6 Suppl):79-87. https://doi.org/10.4269/ajtmh.2007.77.79spa
dc.relation.referencesVenkatesh A, Patel SK, Ray S, Shastri J, Chatterjee G, Kochar SK, et al. Proteomics of Plasmodium vivax malaria: new insights, progress and potential. Expert review of proteomics. 2016;13(8):771-82. https://doi.org/10.1080/14789450.2016.1210515spa
dc.relation.referencesMoreno-Perez DA, Degano R, Ibarrola N, Muro A, Patarroyo MA. Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics. 2015;113:268-80. https://doi.org/10.1016/j.jprot.2014.10.003spa
dc.relation.referencesAcharya P, Pallavi R, Chandran S, Chakravarti H, Middha S, Acharya J, et al. A glimpse into the clinical proteome of human malaria parasites Plasmodium falciparum and Plasmodium vivax. Proteomics Clinical applications. 2009;3(11):1314-25. https://doi.org/10.1002/prca.200900090spa
dc.relation.referencesBoucher MJ, Ghosh S, Zhang L, Lal A, Jang SW, Ju A, et al. Integrative proteomics and bioinformatic prediction enable a high-confidence apicoplast proteome in malaria parasites. PLoS biology. 2018;16(9):e2005895. https://doi.org/10.1371/journal.pbio.2005895spa
dc.relation.referencesBunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L, Le Roch KG. The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. Genome Biol. 2016;17(1):147. https://doi.org/10.1186/s13059-016-1014-0spa
dc.relation.referencesAlam MS, Choudhary V, Zeeshan M, Tyagi RK, Rathore S, Sharma YD. Interaction of Plasmodium vivax Tryptophan-rich Antigen PvTRAg38 with Band 3 on Human Erythrocyte Surface Facilitates Parasite Growth. The Journal of biological chemistry. 2015;290(33):20257-72. https://doi.org/10.1074/jbc.M115.644906spa
dc.relation.referencesArevalo-Pinzon G, Curtidor H, Patino LC, Patarroyo MA. PvRON2, a new Plasmodium vivax rhoptry neck antigen. Malaria journal. 2011;10:60. https://doi.org/10.1186/1475-2875-10-60spa
dc.relation.referencesBartholdson SJ, Bustamante LY, Crosnier C, Johnson S, Lea S, Rayner JC, et al. Semaphorin-7A is an erythrocyte receptor for P. falciparum merozoite-specific TRAP homolog, MTRAP. PLoS pathogens. 2012;8(11):e1003031. https://doi.org/10.1371/journal.ppat.1003031spa
dc.relation.referencesBatchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, Tolia NH. Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS pathogens. 2014;10(1):e1003869. https://doi.org/10.1371/journal.ppat.1003869spa
dc.relation.referencesBermudez M, Arevalo-Pinzon G, Rubio L, Chaloin O, Muller S, Curtidor H, et al. Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cellular microbiology. 2018;20(7):e12835. https://doi.org/10.1111/cmi.12835spa
dc.relation.referencesChen Q, Pettersson F, Vogt AM, Schmidt B, Ahuja S, Liljestrom P, et al. Immunization with PfEMP1-DBL1alpha generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine. 2004;22(21-22):2701-12. https://doi.org/10.1016/j.vaccine.2004.02.015spa
dc.relation.referencesCheng Y, Lu F, Tsuboi T, Han ET. Characterization of a novel merozoite surface protein of Plasmodium vivax, Pv41. Acta tropica. 2013;126(3):222-8. https://doi.org/10.1016/j.actatropica.2013.03.002spa
dc.relation.referencesDouglas AD, Williams AR, Knuepfer E, Illingworth JJ, Furze JM, Crosnier C, et al. Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5. J Immunol. 2014;192(1):245-58. https://doi.org/10.4049/jimmunol.1302045spa
dc.relation.referencesDuraisingh MT, Maier AG, Triglia T, Cowman AF. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(8):4796-801. https://doi.org/10.1073/pnas.0730883100spa
dc.relation.referencesDundas K, Shears MJ, Sun Y, Hopp CS, Crosnier C, Metcalf T, et al. Alpha-v-containing integrins are host receptors for the Plasmodium falciparum sporozoite surface protein, TRAP. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(17):4477-82. https://doi.org/10.1073/pnas.1719660115spa
dc.relation.referencesFavuzza P, Guffart E, Tamborrini M, Scherer B, Dreyer AM, Rufer AC, et al. Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody. eLife. 2017;6. https://doi.org/10.7554/eLife.20383spa
dc.relation.referencesKhattab A, Bonow I, Schreiber N, Petter M, Schmetz C, Klinkert MQ. Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion. Malaria journal. 2008;7:137. https://doi.org/10.1186/1475-2875-7-137spa
dc.relation.referencesRathore S, Dass S, Kandari D, Kaur I, Gupta M, Sharma YD. Basigin Interacts with Plasmodium vivax Tryptophan-rich Antigen PvTRAg38 as a Second Erythrocyte Receptor to Promote Parasite Growth. The Journal of biological chemistry. 2017;292(2):462-76. https://doi.org/10.1074/jbc.M116.744367spa
dc.relation.referencesSalamanca DR, Gomez M, Camargo A, Cuy-Chaparro L, Molina-Franky J, Reyes C, et al. Plasmodium falciparum Blood Stage Antimalarial Vaccines: An Analysis of Ongoing Clinical Trials and New Perspectives Related to Synthetic Vaccines. Front Microbiol. 2019;10:2712. https://doi.org/10.3389/fmicb.2019.02712spa
dc.relation.referencesAlanine DGW, Quinkert D, Kumarasingha R, Mehmood S, Donnellan FR, Minkah NK, et al. Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. Cell. 2019;178(1):216-28 e21. https://doi.org/10.1016/j.cell.2019.05.025spa
dc.relation.referencesChen L, Xu Y, Wong W, Thompson JK, Healer J, Goddard-Borger ED, et al. Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA. eLife. 2017;6. https://doi.org/10.7554/eLife.21347spa
dc.relation.referencesChootong P, Ntumngia FB, VanBuskirk KM, Xainli J, Cole-Tobian JL, Campbell CO, et al. Mapping epitopes of the Plasmodium vivax Duffy binding protein with naturally acquired inhibitory antibodies. Infection and immunity. 2010;78(3):1089-95. https://doi.org/10.1128/IAI.01036-09spa
dc.relation.referencesGao X, Yeo KP, Aw SS, Kuss C, Iyer JK, Genesan S, et al. Antibodies targeting the PfRH1 binding domain inhibit invasion of Plasmodium falciparum merozoites. PLoS pathogens. 2008;4(7):e1000104. https://doi.org/10.1371/journal.ppat.1000104spa
dc.relation.referencesHealer J, Thompson JK, Riglar DT, Wilson DW, Chiu YH, Miura K, et al. Vaccination with conserved regions of erythrocyte-binding antigens induces neutralizing antibodies against multiple strains of Plasmodium falciparum. PLoS One. 2013;8(9):e72504. https://doi.org/10.1371/journal.pone.0072504spa
dc.relation.referencesNicolete VC, Frischmann S, Barbosa S, King CL, Ferreira MU. Naturally Acquired Binding-Inhibitory Antibodies to Plasmodium vivax Duffy Binding Protein and Clinical Immunity to Malaria in Rural Amazonians. J Infect Dis. 2016;214(10):1539-46. https://doi.org/10.1093/infdis/jiw407spa
dc.relation.referencesZhou AE, Berry AA, Bailey JA, Pike A, Dara A, Agrawal S, et al. Antibodies to Peptides in Semiconserved Domains of RIFINs and STEVORs Correlate with Malaria Exposure. mSphere. 2019;4(2). https://doi.org/10.1128/mSphere.00097-19spa
dc.relation.referencesHostetler JB, Sharma S, Bartholdson SJ, Wright GJ, Fairhurst RM, Rayner JC. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions. PLoS Negl Trop Dis. 2015;9(12):e0004264. https://doi.org/10.1371/journal.pntd.0004264spa
dc.relation.referencesDraper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, et al. Malaria Vaccines: Recent Advances and New Horizons. Cell Host Microbe. 2018;24(1):43-56. https://doi.org/10.1016/j.chom.2018.06.008spa
dc.relation.referencesSingh K, Mukherjee P, Shakri AR, Singh A, Pandey G, Bakshi M, et al. Malaria vaccine candidate based on Duffy-binding protein elicits strain transcending functional antibodies in a Phase I trial. NPJ Vaccines. 2018;3:48. https://doi.org/10.1038/s41541-018-0083-3spa
dc.relation.referencesZheng J, Pan H, Gu Y, Zuo X, Ran N, Yuan Y, et al. Prospects for Malaria Vaccines: Pre-Erythrocytic Stages, Blood Stages, and Transmission-Blocking Stages. Biomed Res Int. 2019;2019:9751471. https://doi.org/10.1155/2019/9751471spa
dc.relation.referencesYadavalli R, Ledger C, Sam-Yellowe TY. In vitro human cell-free expression system for synthesis of malaria proteins. Parasitol Res. 2012;111(6):2461-5. https://doi.org/10.1007/s00436-012-3014-7spa
dc.relation.referencesSrivastava A, Durocher Y, Gamain B. Expressing full-length functional PfEMP1 proteins in the HEK293 expression system. Methods Mol Biol. 2013;923:307-19. https://doi.org/10.1007/978-1-62703-026-7_22spa
dc.relation.referencesZemella A, Thoring L, Hoffmeister C, Kubick S. Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems. Chembiochem. 2015;16(17):2420-31. https://doi.org/10.1002/cbic.201500340spa
dc.relation.referencesHacker DL, Balasubramanian S. Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol. 2016;38:129-36. https://doi.org/10.1016/j.sbi.2016.06.005spa
dc.relation.referencesWingfield PT. Overview of the purification of recombinant proteins. Curr Protoc Protein Sci. 2015;80:6 1 -6 1 35. https://doi.org/10.1002/0471140864.ps0601s80spa
dc.relation.referencesFerrer-Miralles N, Saccardo P, Corchero JL, Xu Z, Garcia-Fruitos E. General introduction: recombinant protein production and purification of insoluble proteins. Methods Mol Biol. 2015;1258:1-24. https://doi.org/10.1007/978-1-4939-2205-5_1spa
dc.relation.referencesPatarroyo MA, Arevalo-Pinzon G, Moreno-Perez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines. 2020;19(2):195-207. https://doi.org/10.1080/14760584.2020.1733421spa
dc.relation.referencesSirima SB, Durier C, Kara L, Houard S, Gansane A, Loulergue P, et al. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1-DiCo malaria vaccine adjuvanted with GLA-SE or Alhydrogel(R) in European and African adults: A phase 1a/1b, randomized, double-blind multi-centre trial. Vaccine. 2017;35(45):6218-27. https://doi.org/10.1016/j.vaccine.2017.09.027spa
dc.relation.referencesGaur D, Singh S, Singh S, Jiang L, Diouf A, Miller LH. Recombinant Plasmodium falciparum reticulocyte homology protein 4 binds to erythrocytes and blocks invasion. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(45):17789-94. https://doi.org/10.1073/pnas.0708772104spa
dc.relation.referencesRosa DS, Iwai LK, Tzelepis F, Bargieri DY, Medeiros MA, Soares IS, et al. Immunogenicity of a recombinant protein containing the Plasmodium vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-human primates (Callithrix jacchus jacchus). Microbes Infect. 2006;8(8):2130-7. https://doi.org/10.1016/j.micinf.2006.03.012spa
dc.relation.referencesGileadi O. Recombinant Protein Expression in E. coli : A Historical Perspective. Methods Mol Biol. 2017;1586:3-10. https://doi.org/10.1007/978-1-4939-6887-9_1spa
dc.relation.referencesGopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 2013;32(6):419-25. https://doi.org/10.1007/s10930-013-9502-5spa
dc.relation.referencesRosano GL, Morales ES, Ceccarelli EA. New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci. 2019;28(8):1412-22. https://doi.org/10.1002/pro.3668spa
dc.relation.referencesHayat SMG, Farahani N, Golichenari B, Sahebkar A. Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know. Curr Pharm Des. 2018;24(6):718-25. https://doi.org/10.2174/1381612824666180131121940spa
dc.relation.referencesFlick K, Ahuja S, Chene A, Bejarano MT, Chen Q. Optimized expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in Escherichia coli. Malaria journal. 2004;3:50. https://doi.org/10.1186/1475-2875-3-50spa
dc.relation.referencesReddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur D. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(4):1179-84. https://doi.org/10.1073/pnas.1415466112spa
dc.relation.referencesNtumngia FB, Thomson-Luque R, Torres Lde M, Gunalan K, Carvalho LH, Adams JH. A Novel Erythrocyte Binding Protein of Plasmodium vivax Suggests an Alternate Invasion Pathway into Duffy-Positive Reticulocytes. mBio. 2016;7(4). https://doi.org/10.1128/mBio.01261-16spa
dc.relation.referencesMuh F, Han JH, Nyunt MH, Lee SK, Jeon HY, Ha KS, et al. Identification of a novel merozoite surface antigen of Plasmodium vivax, PvMSA180. Malaria journal. 2017;16(1):133. https://doi.org/10.1186/s12936-017-1760-9spa
dc.relation.referencesArevalo-Pinzon G, Bermudez M, Curtidor H, Patarroyo MA. The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malaria journal. 2015;14:106. https://doi.org/10.1186/s12936-015-0619-1spa
dc.relation.referencesArevalo-Pinzon G, Curtidor H, Abril J, Patarroyo MA. Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (PvRON4). Malaria journal. 2013;12:356. https://doi.org/10.1186/1475-2875-12-356spa
dc.relation.referencesDeshmukh A, Chourasia BK, Mehrotra S, Kana IH, Paul G, Panda A, et al. Plasmodium falciparum MSP3 Exists in a Complex on the Merozoite Surface and Generates Antibody Response during Natural Infection. Infection and immunity. 2018;86(8). https://doi.org/10.1128/IAI.00067-18spa
dc.relation.referencesSisquella X, Nebl T, Thompson JK, Whitehead L, Malpede BM, Salinas ND, et al. Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion. eLife. 2017;6. https://doi.org/10.7554/eLife.21083spa
dc.relation.referencesGupta ED, Anand G, Singh H, Chaddha K, Bharti PK, Singh N, et al. Naturally Acquired Human Antibodies Against Reticulocyte-Binding Domains of Plasmodium vivax Proteins, PvRBP2c and PvRBP1a, Exhibit Binding-Inhibitory Activity. J Infect Dis. 2017;215(10):1558-68. https://doi.org/10.1093/infdis/jix170spa
dc.relation.referencesArevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616. https://doi.org/10.1038/s41598-017-10025-6spa
dc.relation.referencesChen S, Gray D, Ma J, Subramanian S. Production of recombinant proteins in mammalian cells. Curr Protoc Protein Sci. 2001;Chapter 5:Unit5 10.spa
dc.relation.referencesBandaranayake AD, Almo SC. Recent advances in mammalian protein production. FEBS letters. 2014;588(2):253-60. https://doi.org/10.1016/j.febslet.2013.11.035spa
dc.relation.referencesO'Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, et al. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv. 2020:107552. https://doi.org/10.1016/j.biotechadv.2020.107552spa
dc.relation.referencesCrosnier C, Wanaguru M, McDade B, Osier FH, Marsh K, Rayner JC, et al. A library of functional recombinant cell-surface and secreted P. falciparum merozoite proteins. Mol Cell Proteomics. 2013;12(12):3976-86. https://doi.org/10.1074/mcp.O113.028357spa
dc.relation.referencesZenonos ZA, Rayner JC, Wright GJ. Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Malaria journal. 2014;13:93. https://doi.org/10.1186/1475-2875-13-93spa
dc.relation.referencesFranca CT, He WQ, Gruszczyk J, Lim NT, Lin E, Kiniboro B, et al. Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children. PLoS Negl Trop Dis. 2016;10(9):e0005014. https://doi.org/10.1371/journal.pntd.0005014spa
dc.relation.referencesFranca CT, White MT, He WQ, Hostetler JB, Brewster J, Frato G, et al. Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. eLife. 2017;6. https://doi.org/10.7554/eLife.28673spa
dc.relation.referencesCrosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534-7. https://doi.org/10.1038/nature10606spa
dc.relation.referencesRodriguez M, Lustigman S, Montero E, Oksov Y, Lobo CA. PfRH5: a novel reticulocyte-binding family homolog of plasmodium falciparum that binds to the erythrocyte, and an investigation of its receptor. PLoS One. 2008;3(10):e3300. https://doi.org/10.1371/journal.pone.0003300spa
dc.relation.referencesArevalo-Pinzon G, Curtidor H, Munoz M, Patarroyo MA, Bermudez A, Patarroyo ME. A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine. 2012;30(3):637-46. https://doi.org/10.1016/j.vaccine.2011.11.012spa
dc.relation.referencesWanaguru M, Crosnier C, Johnson S, Rayner JC, Wright GJ. Biochemical analysis of the Plasmodium falciparum erythrocyte-binding antigen-175 (EBA175)-glycophorin-A interaction: implications for vaccine design. The Journal of biological chemistry. 2013;288(45):32106-17. https://doi.org/10.1074/jbc.M113.484840spa
dc.relation.referencesTamborrini M, Hauser J, Schafer A, Amacker M, Favuzza P, Kyungtak K, et al. Vaccination with virosomally formulated recombinant CyRPA elicits protective antibodies against Plasmodium falciparum parasites in preclinical in vitro and in vivo models. NPJ Vaccines. 2020;5:9. https://doi.org/10.1038/s41541-020-0158-9spa
dc.relation.referencesMorita M, Takashima E, Ito D, Miura K, Thongkukiatkul A, Diouf A, et al. Immunoscreening of Plasmodium falciparum proteins expressed in a wheat germ cell-free system reveals a novel malaria vaccine candidate. Sci Rep. 2017;7:46086. https://doi.org/10.1038/srep46086spa
dc.relation.referencesKanoi BN, Takashima E, Morita M, White MT, Palacpac NM, Ntege EH, et al. Antibody profiles to wheat germ cell-free system synthesized Plasmodium falciparum proteins correlate with protection from symptomatic malaria in Uganda. Vaccine. 2017;35(6):873-81. https://doi.org/10.1016/j.vaccine.2017.01.001spa
dc.relation.referencesTakeda M, Kainosho M. Cell-free protein production for NMR studies. Methods Mol Biol. 2012;831:71-84. https://doi.org/10.1007/978-1-61779-480-3_5spa
dc.relation.referencesTsuboi T, Takeo S, Iriko H, Jin L, Tsuchimochi M, Matsuda S, et al. Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infection and immunity. 2008;76(4):1702-8. https://doi.org/10.1128/IAI.01539-07spa
dc.relation.referencesYadavalli R, Sam-Yellowe T. HeLa Based Cell Free Expression Systems for Expression of Plasmodium Rhoptry Proteins. J Vis Exp. 2015(100):e52772. https://doi.org/10.3791/52772spa
dc.relation.referencesChen JH, Jung JW, Wang Y, Ha KS, Lu F, Lim CS, et al. Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. J Proteome Res. 2010;9(12):6479-89. https://doi.org/10.1021/pr100705gspa
dc.relation.referencesLu F, Li J, Wang B, Cheng Y, Kong DH, Cui L, et al. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics. 2014;102:66-82. https://doi.org/10.1016/j.jprot.2014.02.029spa
dc.relation.referencesArevalo-Pinzon G, Gonzalez-Gonzalez M, Suarez CF, Curtidor H, Carabias-Sanchez J, Muro A, et al. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malaria journal. 2018;17(1):270. https://doi.org/10.1186/s12936-018-2414-2spa
dc.relation.referencesTakeo S, Arumugam TU, Torii M, Tsuboi T. Wheat germ cell-free technology for accelerating the malaria vaccine research. Expert Opin Drug Discov. 2009;4(11):1191-9. https://doi.org/10.1517/17460440903369813spa
dc.relation.referencesCurtidor H, Patino LC, Arevalo-Pinzon G, Patarroyo ME, Patarroyo MA. Identification of the Plasmodium falciparum rhoptry neck protein 5 (PfRON5). Gene. 2011;474(1-2):22-8. https://doi.org/10.1016/j.gene.2010.12.005spa
dc.relation.referencesHossain ME, Dhawan S, Mohmmed A. The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. Parasitol Res. 2012;110(5):1711-21. https://doi.org/10.1007/s00436-011-2690-zspa
dc.relation.referencesQuintana MDP, Ch'ng JH, Zandian A, Imam M, Hultenby K, Theisen M, et al. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4.2-RON4-GLURP) contributes to merozoite invasion. PLoS One. 2018;13(8):e0201669. https://doi.org/10.1371/journal.pone.0201669spa
dc.relation.referencesGardiner DL, Spielmann T, Dixon MW, Hawthorne PL, Ortega MR, Anderson KL, et al. CLAG 9 is located in the rhoptries of Plasmodium falciparum. Parasitol Res. 2004;93(1):64-7. https://doi.org/10.1007/s00436-004-1098-4spa
dc.relation.referencesIto D, Takashima E, Yamasaki T, Hatano S, Hasegawa T, Miura K, et al. Antibodies against a Plasmodium falciparum RON12 inhibit merozoite invasion into erythrocytes. Parasitology international. 2019;68(1):87-91. https://doi.org/10.1016/j.parint.2018.10.006spa
dc.relation.referencesCheng Y, Wang B, Lu F, Ahmed MA, Han JH, Na SH, et al. Identification and characterization of Pv50, a novel Plasmodium vivax merozoite surface protein. Parasites & vectors. 2019;12(1):176. https://doi.org/10.1186/s13071-019-3434-7spa
dc.relation.referencesCheng Y, Li J, Ito D, Kong DH, Ha KS, Lu F, et al. Antigenicity and immunogenicity of PvRALP1, a novel Plasmodium vivax rhoptry neck protein. Malaria journal. 2015;14:186. https://doi.org/10.1186/s12936-015-0698-zspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.spa
dc.title.translatedRecombinant protein expression systems for functional analysis of Plasmodium falciparum and Plasmodium vivax antigens: a revieweng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

FicherosTamañoFormatoVer
Revista Investig. Salud Univ. Boyacá-484.pdf414.8Kbapplication/pdfVer/

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Revista Investigación en Salud Universidad de Boyacá - 2021
Excepto si se señala otra cosa, la licencia del ítem se describe como Revista Investigación en Salud Universidad de Boyacá - 2021