Mostrar el registro sencillo del ítem
Aptitud física y composición corporal en pacientes con obesidad mórbida por mutación en el gen de la leptina: serie de casos
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.contributor.advisor | Mojica Cerquera, Juan Gregorio | |
dc.contributor.advisor | Ferrebuz Cardozo, Atilio Junior | |
dc.contributor.author | Higuera Ramírez, Randy Sebastián | |
dc.date.accessioned | 2024-10-03T15:10:29Z | |
dc.date.available | 2024-01-31 | |
dc.date.available | 2024-10-03T15:10:29Z | |
dc.date.issued | 2023-01-19 | |
dc.identifier.uri | https://repositorio.uniboyaca.edu.co/handle/uniboyaca/845 | |
dc.description.abstract | La obesidad es considerada una patología multifactorial, compleja y reversible que puede desencadenar patologías crónicas no transmisibles, etiológicamente desde la proteómica viene en crecimiento estudios de alteraciones congénitas del gen de la leptina. Se desconoce la interacción del ejercicio con dicha alteración genética. El objetivo del presente trabajo es determinar la aptitud física y composición corporal en dos pacientes con obesidad mórbida por mutación en el gen de la leptina. Se realizó un estudio cuantitativo con diseño serie de casos, determinando la aptitud cardiorrespiratoria con ergoespirometría, la aptitud de fuerza muscular con prueba sentadilla, test flexiones de pecho, fuerza de agarre y test de fuerza abdominal y composición corporal con Impedanciometria y medidas manuales. Se evidencia diferencia en todas las cualidades medidas, en la aptitud cardiorrespiratoria en cuanto a medición de Tasa de intercambio respiratorio (RER) superiores incluso a deportistas de alto rendimiento y calorimetría indirecta con utilización energética predominante de carbohidratos, lípidos nulos o casi nulos. La aptitud de fuerza muscular muestra debilidad de Core y tren superior, con resultados de fuerza y tolerancia promedio de extremidades inferiores. Mediciones antropométricas no presentan diferencia significativa con medidas de referencia. Estos cambios ergoespirométricos no encontrados en la literatura muestran que no presentan una oxidación de grasa o es casi nula comparativamente con obesos sin esta patología, asociado a una disminución importante de la fuerza muscular y altos parámetros dependientes de grasa. Puede ser una causa de por qué mucha población no tiene disminución de peso con estrategias como dieta o ejercicio. Sin embargo, se requieren estudios adicionales y búsqueda de dicha población. | spa |
dc.description.abstract | Obesity is considered a multifactorial, complex, and reversible pathology that could trigger chronic non-transmissible pathologies, etiologically since proteomics is growing studies of congenital alterations of the leptin gene. The interaction of exercise with this genetic alteration is unknown. The aim of the present study was to determine physical fitness and body composition in two patients with morbid obesity due to a mutation in the leptin gene. A quantitative study with case series design was carried out, determining cardiorespiratory fitness with cardiopulmonary testing exercise (CPET), muscular strength fitness with squat test, push-up test, handgrip strength and abdominal strength test and body composition with Impedanciometry and manual measurements. Differences are evidenced in all the qualities measured, in cardiorespiratory fitness in terms of measurement of respiratory exchange rate (RER) superior even to high performance athletes and indirect calorimetry with predominant energetic use of carbohydrates, lipids null or almost null. Muscle strength aptitude shows weakness of Core and upper body, with results of average strength and tolerance of lower extremities. Anthropometric measurements show no significant difference with reference measurements. These cardiopulmonary testing exercise (CPET) changes not found in the literature show that they do not present fat oxidation, or it is almost null compared to obese without this pathology, associated to an important decrease of muscular strength and high fat-dependent parameters. It may because of why many populations does not have weight loss with strategies such as diet or exercise. However, further studies and search of this population are required. | eng |
dc.description.tableofcontents | INTRODUCCIÓN 16 -- 1. DESCRIPCIÓN DE SERIE DE CASOS 19 -- 1.1 PACIENTE 1 19 -- 1.2 PACIENTE 2 21 -- 2. DESCRIPCIÓN DE APTITUD CARDIORRESPIRATORIA POR ERGOESPIROMETRÍA 23 -- 2.1 GENERALIDADES 23 -- 2.2 METODOLOGÍA 27 -- 2.3 RESULTADOS 29 -- 2.3.1 Paciente 1 29 -- 2.3.2 Paciente 2 35 -- 2.4 DISCUSIÓN 39 -- 3. DESCRIPCIÓN DE APTITUD DE FUERZA POR MEDIO DE PRUEBA PUSH UP, SENTADILLA, FUERZA DE AGARRE Y TEST ABDOMINAL SIT – UP 44 -- 3.1 GENERALIDADES 44 -- 3.2 METODOLOGÍA 47 -- 3.3 RESULTADOS 48 -- 3.3.1Transductor Lineal 48 -- 3.3.2 Test de Push-up y sentadilla 48 -- 3.3.3 Dinamometría 49 -- 3.3.4 Fuerza abdominal sit-up 50 -- 3.4 DISCUSIÓN 50 -- 4.2 METODOLOGÍA 57 -- 4.3 RESULTADOS 58 -- 4.3.1 Paciente 1 58 -- 4.3.2 Paciente 2 59 -- 4.4 DISCUSIÓN 61 -- 5. CONCLUSIONES 63 -- 6. RECOMENDACIONES 64 -- BIBLIOGRAFIA 65 | spa |
dc.format.extent | 79 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Boyacá | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Aptitud física y composición corporal en pacientes con obesidad mórbida por mutación en el gen de la leptina: serie de casos | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Especialización | spa |
dc.description.degreename | Especialista Médico Clínica en Medicina del Deporte y la Actividad Física | spa |
dc.description.program | Especialidad Médico Clínica en Medicina del Deporte y la Actividad Física | spa |
dc.identifier.barcode | 4592 | |
dc.identifier.instname | Universidad Boyacá | spa |
dc.identifier.reponame | Repositorio Universidad de Boyacá | spa |
dc.identifier.repourl | https://repositorio.uniboyaca.edu.co | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Colombia | spa |
dc.publisher.place | Boyacá | spa |
dc.publisher.place | Tunja | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | 1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59. | spa |
dc.relation.references | 2. Arnett DK, Blumenthal RS, Albert MA, Michos ED, Buroker AB, Miedema MD, et al. 2019 ACC / AHA Guideline on the primary prevention of cardiovascular disease a report of the American College of Cardiology / American Heart Association Task Force on Clinical Practice Guidelines. Circultaion. 2019;140(11):e596 - e646 | spa |
dc.relation.references | 3. Serrato M, Galeano EE, Sanchez L, Quiceno JC, Albarracín J, Cohen DD. Lineamiento de política pública en ciencias del deporte en medicina. Bogotá: Coldeportes; 2015. | spa |
dc.relation.references | 4. Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Acad Nutr Diet. 2016;116(3):501–28. | spa |
dc.relation.references | 5. Di Naso FC, Pereira JS, Monteiro MB. Clinical and economical outcome of a cardiopulmonary and metabolic rehabilitation program. Arq Bras Cardiol. 2007;89(4):274. | spa |
dc.relation.references | 6. World Health Organization. Obesity and overweight. [Internet]. Ginebra: WHO; 2021 [citado 29 Nov 2022]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight | spa |
dc.relation.references | 7. Ministerio de Salud. Encuesta Nacional de la Situación Nutricional – ENSIN 2015 [Internet]. Bogotá: Ministerio de Salud; 2015 [citado 29 Nov 2022]. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/ensin-colombia-2018.pdf | spa |
dc.relation.references | 8. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A, Miele C, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol [Internet]. 2020 [citado 29 Nov 2022];10(Ene):1–20. Disponible en: https://www.frontiersin.org/articles/10.3389/fphys.2019.01607/full | spa |
dc.relation.references | 9. Bray GA, Kim KK, Wilding JPH. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev [Internet]. 2017 [citado 29 Nov 2022];18(7):715–23. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28489290/ | spa |
dc.relation.references | 10. Sali. MA, Alobaidi. AH, Alsamarai AM. Obesity as a risk factor for disease development: Part-I Cardiovascular diseases and renal failure. Indian J Public Heal Res Dev [Internet]. 2020 [citado 29 Nov 2022];11(1):1926–31. Disponible en: https://medicopublication.com/index.php/ijphrd/article/view/1461 | spa |
dc.relation.references | 11. Friedenreich CM, Ryder-Burbidge C, McNeil J. Physical activity, obesity and sedentary behavior in cancer etiology: epidemiologic evidence and biologic mechanisms. Mol Oncol [Internet]. 2021 [citado 29 Nov 2022];15(3):790–800. Disponible en: https://febs.onlinelibrary.wiley.com/doi/full/10.1002/1878-0261.12772 | spa |
dc.relation.references | 12. Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN, et al. C-C Chemokine Receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes [Internet]. 2010 [citado 29 Nov 2022];59(4):916–25. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20103702/ | spa |
dc.relation.references | 13. Malnick SDH, Knobler H. The medical complications of obesity. QJM An Int J Med [Internet]. 2006 [citado 29 Nov 2022];99(9):565–79. Disponible en: https://academic.oup.com/qjmed/article/99/9/565/2258973 | spa |
dc.relation.references | 14. Preston SH, Vierboom YC, Stokes A. The role of obesity in exceptionally slow US mortality improvement. Proc Natl Acad Sci U S A. 2018;115(5):957–61. | spa |
dc.relation.references | 15. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism [Internet]. 2019 [citado 29 Nov 2022];92:6–10. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S002604951830194X | spa |
dc.relation.references | 16. Clark JE. Diet, exercise or diet with exercise: comparing the effectiveness of treatment options for weight-loss and changes in fitness for adults (18-65 years old) who are overfat, or obese; systematic review and meta-analysis. J Diabetes Metab Disord. 2015;14:31. | spa |
dc.relation.references | 17. Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev [Internet]. 2015 [citado 29 Nov 2022];73(10):661–74. Disponible en: https://academic.oup.com/nutritionreviews/article/73/10/661/1849182 | spa |
dc.relation.references | 18. Swift DL, McGee JE, Earnest CP, Carlisle E, Nygard M, Johannsen NM. The effects of exercise and physical activity on weight loss and maintenance. Prog Cardiovasc Dis [Internet]. 2018 [citado 29 Nov 2022];61(2):206–13. Disponible en: https://www.sciencedirect.com/science/article/pii/S0033062018301440?via%3Dihub | spa |
dc.relation.references | 19. Kadouh HC, Acosta A. Current paradigms in the etiology of obesity. Tech Gastrointest Endosc [Internet]. 2017 [citado 29 Nov 2022];19(1):2–11. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1096288316300833?via%3Dihub | spa |
dc.relation.references | 20. Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci. 2016;130(12):943–86. | spa |
dc.relation.references | 21. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol - Endocrinol Metab [Internet]. 2011 [citado 29 Nov 2022];301(4):567–567. Disponible en: https://journals.physiology.org/doi/full/10.1152/ajpendo.00315.2011 | spa |
dc.relation.references | 22. Huvenne H, Dubern B, Clément K, Poitou C. Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obes Facts [Internet]. 2016 [citado 29 Nov 2022];9(3):158–73. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27241181/ | spa |
dc.relation.references | 23. Comuzzie. A, Hixson. J, Almasy. L, Mitchell. B, Mahaney. M, Dyer. T, et al. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet [Internet]. 1997 [citado 29 Nov 2022];15:273–6. Disponible en: https://www.nature.com/articles/ng0397-273 | spa |
dc.relation.references | 24. Paz-Filho G, Mastronardi CA, Licinio J. Leptin treatment: Facts and expectations. Metabolism [Internet]. 2015 [citado 29 Nov 2022];64(1):146–56. Disponible en: https://www.metabolismjournal.com/article/S0026-0495(14)00234-0/fulltext | spa |
dc.relation.references | 25. Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol [Internet]. 2018 [citado 29 Nov 2022];6(3):223–36. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S2213858717302000?via%3Dihub | spa |
dc.relation.references | 26. Paolacci S, Pompucci G, Paolini B, Del Ciondolo I, Miggiano GAD, Aquilanti B, et al. Mendelian non-syndromic obesity. Acta Biomed. 2019;90(3):87–9. | spa |
dc.relation.references | 27. Dayal D, Seetharaman K, Panigrahi I, Muthuvel B, Agarwal A. Severe early onset obesity due to a novel missense mutation in exon 3 of the leptin gene in an infant from Northwest India. JCRPE J Clin Res Pediatr Endocrinol [Internet]. 2018 [citado 29 Nov 2022];10(3):274–8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29217499/ | spa |
dc.relation.references | 28. ElSaeed G, Mousa N, El-Mougy F, Hafez M, Khodeera S, Alhelbawy M, et al. Monogenic leptin deficiency in early childhood obesity. Pediatr Obes. 2020;15(1):1–7. | spa |
dc.relation.references | 29. Carl M, Sadaf F, Whitehead. J, Soos M, Rau. H, Wareham. N, et al. Congenital leptin deficiency is associated withsevere early-onset obesity in humans. Lett to Nat [Internet]. 1997 [citado 29 Nov 2022];387(Junio):903–8. Disponible en: http://phy.ucsf.edu/neurograd/files/sp11-genetics/051811nature1997.pdf%5Cnpapers2://publication/uuid/1355BB4A-2FAC-4F48-B0EA-E5676FBD66A6 | spa |
dc.relation.references | 30. Strobel A, Issad T, Camoin L, Ozata M, Strosberg D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet [Internet]. 1998 [citado 29 Nov 2022];213–215. Disponible en: https://www.nature.com/articles/ng0398-213 | spa |
dc.relation.references | 31. Chekhranova MK, Karpova SK, Yatsyshina SB, Pankov JA. A new mutation c.422C>G (p.S141C) in homoand heterozygous forms of the human leptin gene. Russ J Bioorganic Chem. 2008;34(6):768–70. | spa |
dc.relation.references | 32. Mazen I, Amr K, Tantawy S, Farooqi IS, El Gammal M. A novel mutation in the leptin gene (W121X) in an Egyptian family. Mol Genet Metab Reports [Internet]. 2014 [citado 29 Nov 2022];1:474–6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121350/ | spa |
dc.relation.references | 33. Thakur S, Kumar A, Dubey S, Saxena R, Peters ANC, Singhal A. A novel mutation of the leptin gene in an Indian patient. Clin Genet [Internet]. 2014 [citado 29 Nov 2022];86(4):391–3. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24304187/ | spa |
dc.relation.references | 34. Fischer-Posovszky P, Von Schnurbein J, Moepps B, Lahr G, Strauss G, Barth TF, et al. A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness. J Clin Endocrinol Metab. 2010;95(6):2836–40. | spa |
dc.relation.references | 35. Torchen L, Hakamy B, Gordon L, Marsh E, Yaseen N, Neff L. Congenital Leptin Deficiency: Clinical Insights from the First Reported US Cases. Journa Endocr Soc [Internet]. 2020 [citado 29 Nov 2022];4(Cld):276–7. Disponible en: https://academic.oup.com/jes/article-abstract/4/Supplement_1/SAT-024/5833274 | spa |
dc.relation.references | 36. Yupanqui-Lozno H, Bastarrachea RA, Yupanqui-Velazco ME, Alvarez-Jaramillo M, Medina-Méndez E, Giraldo-Peña AP, et al. Congenital leptin deficiency and leptin gene missense mutation found in two colombian sisters with severe obesity. Genes (Basel) [Internet]. 2019 [citado 29 Nov 2022];10(5). Disponible en: https://pubmed.ncbi.nlm.nih.gov/31067764/ | spa |
dc.relation.references | 37. Thomas W, Tronieri JS, Butryn ML. Lifestyle Modification Approaches for the Treatment of Obesity in Adults. Am Psychol [Internet]. 2020 [citado 29 Nov 2022];75(2):235–51. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32052997/ | spa |
dc.relation.references | 38. Braun B. Optimizing the Exercise Drug for Metabolic Rehabilitation. Kinesiol Rev. 2015;4(1):107–12. | spa |
dc.relation.references | 39. Bernardi S, Marcuzzi A, Piscianz E, Tommasini A, Fabris B. The complex interplay between lipids, immune system and interleukins in cardio-metabolic diseases. Int J Mol Sci. 2018;19(12):1–24. | spa |
dc.relation.references | 40. Severinsen MCK, Pedersen BK. Muscle–Organ Crosstalk: The Emerging Roles of Myokines. Endocr Rev. 2020;41(4):594–609. | spa |
dc.relation.references | 41. Michałowska J, Miller-Kasprzak E, Bogdański P. Incretin hormones in obesity and related cardiometabolic disorders: The clinical perspective. Nutrients. 2021;13(2):1–32. | spa |
dc.relation.references | 42. Kyrou I, Tsigos C. Stress hormones: physiological stress and regulation of metabolism. Curr Opin Pharmacol. 2009;9(6):787–93. | spa |
dc.relation.references | 43. Faulkner JL, Belin de Chantemèle EJ. Sex hormones, aging and cardiometabolic syndrome. Biol Sex Differ. 2019 Jul 1;10(1):30. | spa |
dc.relation.references | 44. López-Jaramillo P, Gómez-Arbeláez D, López-López J, López-López C, Martínez-Ortega J, Gómez-Rodríguez A, et al. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Investig. 2014;18(1):37–45. | spa |
dc.relation.references | 45. Farkhondeh T, Llorens S, Pourbagher-Shahri AM, Ashrafizadeh M, Talebi M, Shakibaei M, et al. An Overview of the Role of Adipokines in Cardiometabolic Diseases. Molecules. 2020;25(21):1–16. | spa |
dc.relation.references | 46. Perakakis N, Farr OM, Mantzoros CS. Leptin in Leanness and Obesity: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021;77(6):745–60. | spa |
dc.relation.references | 47. Lopez P. Leptin/Adiponectin in cardiometabolic disease. Lat Am Soc Hyperten- sion. 2016;34(Junio 2016):10349. | spa |
dc.relation.references | 48. Hu X, Wu R, Jiang Z, Wang L, Chen P, Zhang L, et al. Leptin Signaling Is Required for Augmented Therapeutic Properties of Mesenchymal Stem Cells Conferred by Hypoxia Preconditioning Leptin may play a physiological role in priming MSCs HHS Public Access. Stem Cells [Internet]. 2014 [citado 29 Nov 2022];32(10):2702–13. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5096299/pdf/nihms825794.pdf | spa |
dc.relation.references | 49. Segar AH, Fairbank JCT, Urban J. Leptin and the intervertebral disc: a biochemical link exists between obesity, intervertebral disc degeneration and low back pain—an in vitro study in a bovine model. Eur Spine J [Internet]. 2019 [citado 29 Nov 2022];28(2):214–23. Disponible en: https://link.springer.com/article/10.1007/s00586-018-5778-7 | spa |
dc.relation.references | 50. Kroon FPB, Veenbrink AI, de Mutsert R, Visser AW, van Dijk KW, le Cessie S, et al. The role of leptin and adiponectin as mediators in the relationship between adiposity and hand and knee osteoarthritis. Osteoarthr Cartil [Internet]. 2019 [citado 29 Nov 2022];27(12):1761–7. Disponible en: https://www.sciencedirect.com/science/article/pii/S1063458419311732?via%3Dihub | spa |
dc.relation.references | 51. Campos RM da S, Masquio DCL, Corgosinho FC, de Carvalho-Ferreira JP, Netto BDM, Clemente APG, et al. Relationship between adiponectin and leptin on osteocalcin in obese adolescents during weight loss therapy. Arch Endocrinol Metab. 2018;62(3):275–84. | spa |
dc.relation.references | 52. Hamrick MW, Herberg S, Arounleut P, He HZ, Shiver A, Qi RQ, et al. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice. Biochem Biophys Res Commun. 2010;400(3):379–83. | spa |
dc.relation.references | 53. Franklin BA, Thompson PD, Al-Zaiti SS, Albert CM, Hivert M-F, Levine BD, et al. Exercise-Related acute cardiovascular events and potential deleterious adaptations following long-term exercise training: placing the risks into Perspective–An Update: A scientific statement from the american heart association. Circulation. 2020;141:1–32. | spa |
dc.relation.references | 54. Pelliccia A, Sharma S, Gati S, Bäck M, Börjesson M, Caselli S, et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J. 2021;42(1):17–96. | spa |
dc.relation.references | 55. American College of Sports Medicine ACSM´s. ACSM Guidelines for Exercise Testing and Preescripción. [Internet]. Wolters Kluwer; 2018 [citado 29 Nov 2022]. Disponible en: https://lccn.loc.gov/2016042823 | spa |
dc.relation.references | 56. Ezzatvar Y, Izquierdo M, Núñez J, Calatayud J, Ramírez-Vélez R, García-Hermoso A. Cardiorespiratory fitness measured with cardiopulmonary exercise testing and mortality in patients with cardiovascular disease: A systematic review and meta-analysis. J Sport Health Sci. 2021;10(6):609-619. | spa |
dc.relation.references | 57. Beam WC, Adams GM. Exercise physiology [Internet]. Mc Graw Hill. California; 2014 [citado 29 Nov 2022]. Disponible en: https://pdfuni.com/sample/MedicalHealth/MH301-400/MH388/sample-Exercise Physiology Laboratory Manual 7th 7E.pdf | spa |
dc.relation.references | 58. Albouaini K, Egred M, Alahmar A, Wright DJ. Cardiopulmonary exercise testing and its application. Postgrad Med J. 2007 Nov;83(985):675-82. | spa |
dc.relation.references | 59. Weisman IM, Weisman IM, Marciniuk D, Martinez FJ, Sciurba F, Sue D, et al. ATS / ACCP Statement on Cardiopulmonary Exercise testing. Am Thorac Soc / Am Coll Chest Physicians. 2003;167:211–77. | spa |
dc.relation.references | 60. González R, Abella P, Navarro V. Entrenamiento deportivo. Teoría y prácticas. Madrid: Editorial Medica Panamericana; 2014. | spa |
dc.relation.references | 61. López Chicharro J, Vicente Campos D, Cancino López J. Fisiología del entrenamiento aeróbico. Una visión integrada. Madrid: Editorial Medica Panamericana; 2016. | spa |
dc.relation.references | 62. Herdy AH, Ritt LE, Stein R, Araújo CG, Milani M, Meneghelo RS, Ferraz AS, Hossri C, Almeida AE, Fernandes-Silva MM, Serra SM. Cardiopulmonary exercise test: Background, applicability and interpretation. Arq Bras Cardiol. 2016;107(5):467-481. | spa |
dc.relation.references | 63. Manonelles P, Franco L, Naranjo J. Archivos de medicina del deporte. Pruebas de esfuerzo en medicina del deporte. Soc Española Med del Deport. 2016;33(1):1–84. | spa |
dc.relation.references | 64. Fundación Contra la Hipertensión Pulmonar. Ergoespirometría. Madrid: Fundación Contra la Hipertensión Pulmonar. | spa |
dc.relation.references | 65. Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, La Gerche A, Ackerman MJ, Borjesson M, Salerno JC, Asif IM, Owens DS, Chung EH, Emery MS, Froelicher VF, Heidbuchel H, Adamuz C, Asplund CA, Cohen G, Harmon KG, Marek JC, Molossi S, Niebauer J, Pelto HF, Perez MV, Riding NR, Saarel T, Schmied CM, Shipon DM, Stein R, Vetter VL, Pelliccia A, Corrado D. International recommendations for electrocardiographic interpretation in athletes. Eur Heart J. 2018;39(16):1466-1480. | spa |
dc.relation.references | 66. Drezner JA, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, et al. Electrocardiographic interpretation in athletes : the ‘Seattle Criteria.’ Br J Sports Med. 2013;122–4. | spa |
dc.relation.references | 67. Temali I, Kamberi Ahmet. Double product as a predictor of coronary artery disease in males with normal blood pressure. EJNM [Internet]. 2021 [citado 29 Nov 2022];4(2):81-9. Disponible en: https://revistia.org/index.php/ejnm/article/view/5125 | spa |
dc.relation.references | 68. Apodaca J. Pruebas de esfuerzo en cardiología. Apuntes para enfermería especializada. Servicio de cardiología.Vitoria, España: Hospital Universitario Araba; 2018. | spa |
dc.relation.references | 69. Brun JF, Myzia J, Varlet-Marie E, Raynaud de Mauverger E, Mercier J. Beyond the calorie paradigm: taking into account in practice the balance of fat and carbohydrate oxidation during exercise? Nutrients. 2022;14(8):1605. | spa |
dc.relation.references | 70. Cid-Juárez S, Miguel-Reyes JL, Cortés-Télles A, Gochicoa-Rangel L, Mora-romero UDJ, Silva-cerón M, et al. Prueba cardiopulmonar de ejercicio. Recomendaciones y procedimiento. Neumol Cir Torax. 2015;74(3):207–21. | spa |
dc.relation.references | 71. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV; American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and Outcomes Research. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191-225. | spa |
dc.relation.references | 72. Nelson N, Asplund CA. Exercise Testing: Who, When, and Why ? PM&R [Internet]. 2016 [citado 29 Nov 2022];8(3):S16–23. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1016/j.pmrj.2015.10.019 | spa |
dc.relation.references | 73. Krogh A, Lindhard J. The Relative Value of fat and carbohydrate as sources of muscular energy: with appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochem J. 1920 Jul;14(3-4):290-363. | spa |
dc.relation.references | 74. Sim AJW. Microprocessors in indirect calorimetry. J Microcomput Appl. 1984;363–4. | spa |
dc.relation.references | 75. Wasserman K, Hansen J, Sue D, Stringer W, Sietsema K, Sun X-G, et al. Principles of exercise testing and interpretation. Including pathophysiology and clinical applications. 5a ed. Philadelphia, USA: Wolters Kluwer. Lippicott William And Wilkins; 2011. | spa |
dc.relation.references | 76. Bettini S, Quinto G, Neunhaeuserer D, Battista F, Belligoli A, Milan G, et al. Edmonton Obesity Staging System: an improvement by cardiopulmonary exercise testing. Int J Obes [Internet]. 2021 [citado 29 Nov 2022];45(9):1949–57. Disponible en: https://www.nature.com/articles/s41366-021-00856-9 | spa |
dc.relation.references | 77. Franssen WMA, Keytsman C, Marinus N, Verboven K, Hansen D. Chronotropic incompetence is more frequent in obese adolescents and relates to systemic inflammation and exercise intolerance. J Sport Heal Sci. 2021;00. | spa |
dc.relation.references | 78. Dipla K, Nassis GP, Vrabas IS. Blood Pressure Control at Rest and during Exercise in Obese Children and Adults. Hindawi Publ Corp. 2012;2012:10. | spa |
dc.relation.references | 79. Rajalakshmi R, Nataraj SM, Vageesh V, Dhar M. Blood pressure responses to steady treadmill exercise in overweight and obese young adults. Indian J Physiol Pharmacol. 2011;55(4):309-14. | spa |
dc.relation.references | 80. Katch V, McArdle W, Katch F. Essentials of exercise physiology. 4a ed.. Baltimore USA: Wolter Kluwer W; 2015. | spa |
dc.relation.references | 81. Mcauley PA, Artero EG, Sui X, Lee D, Church TS, Lavie CJ, et al. The obesity paradox, cardiorespiratory fitness, and coronary heart disease. JMCP [Internet]. 2012 [citado 29 Nov 2022];87(5):443–51. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0025619612002662?via%3Dihub | spa |
dc.relation.references | 82. Mcauley PA, Keteyian SJ, Brawner CA, Dardari ZA, Rifai M Al, Ehrman JK, et al. Exercise capacity and the obesity paradox in heart failure: the FIT (Henry Ford Exercise Testing) Project. Mayo Clin Proc [Internet]. 2018 [citado 29 Nov 2022];1–8. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0025619618301150?via%3Dihub | spa |
dc.relation.references | 83. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002 Mar 14;346(11):793-801. | spa |
dc.relation.references | 84. Whelton S, McAuley P, Dardari Z, Oriloye O, Brawner C, Ehrman J, et al. Association of BMI, fitness, and mortality in patients with diabetes : evaluating the obesity paradox in the Henry Ford Exercise Testing Project ( FIT Project ) Cohort. 2020;43(Marzo):677–82. | spa |
dc.relation.references | 85. Laukkanen JA, Kurl S, Salonen JT, Lakka TA, Rauramaa R. Peak oxygen pulse during exercise as a predictor for coronary heart disease and all cause death. Heart. 2006 Sep;92(9):1219-24. | spa |
dc.relation.references | 86. Chuang M, Lin I, Huang S, Hsieh M. Patterns of oxygen pulse curve in response to incremental exercise in patients with chronic obstructive pulmonary disease – an observational study. Sci Rep [Internet]. 2017 [citado 29 Nov 2022];(Junio):1–10. Disponible en: https://www.nature.com/articles/s41598-017-11189-x | spa |
dc.relation.references | 87. Mezzani A. Cardiopulmonary Exercise Testing: Basics of Methodology and Measurements. Ann Am Thorac Soc. 2017 Jul;14(Supl_1):S3-S11. | spa |
dc.relation.references | 88. Shen Y, Zhang X, Ma W, Song H, Gong Z, Wang Q, Che L, Xu W, Jiang J, Xu J, Yan W, Zhou L, Ni YI, Li G, Zhang Q, Wang L. VE/VCO2 slope and its prognostic value in patients with chronic heart failure. Exp Ther Med. 2015 Apr;9(4):1407-1412. | spa |
dc.relation.references | 89. Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, Guazzi M. Development of a ventilatory classification system in patients with heart failure. Circulation. 2007 May 8;115(18):2410-7. | spa |
dc.relation.references | 90. Skinner JS, Mclellan TH. The Transition from Aerobic to Anaerobic Metabolism. Res Q Exerc Sport. 1980;51:234–48. | spa |
dc.relation.references | 91. Malli F, Papaioannou AI, Gourgoulianis KI, Daniil Z. The role of leptin in the respiratory system : an overview. Respir Res [Internet]. 2010 [citado 29 Nov 2022];11(1):152. Disponible en: http://respiratory-research.com/content/11/1/152 | spa |
dc.relation.references | 92. O'donnell CP, Schaub CD, Haines AS, Berkowitz DE, Tankersley CG, Schwartz AR, Smith PL. Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med. 1999 May;159(5 Pt 1):1477-84. | spa |
dc.relation.references | 93. Jutant E, Tu L, Humbert M, Huertas A. The Thousand Faces of Leptin in the Lung. Chest [Internet]. 2021 [citado 29 Nov 2022];239–48. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S001236922032105X?via%3Dihub | spa |
dc.relation.references | 94. Picó C, Palou M, Amadora C, Ana P, Rodríguez M, Palou A. Leptin as a key regulator of the adipose organ. Rev Endocr Metab Disord [Internet]. 2022 [citado 29 Nov 2022];(Sep 2021):13–30. Disponible en: https://link.springer.com/article/10.1007/s11154-021-09687-5 | spa |
dc.relation.references | 95. Balsalobre-Fernández C, Jiménez-Reyes P. Entrenamiento de fuerza Nuevas perspectivas metodológicas. España: Universidad Autónoma de Madrid, Universidad Católica de Murcia; 2012. | spa |
dc.relation.references | 96. López-Chicharro J, Fernández-Vaquero A. Fisiología del ejercicio. 3a ed. Medica Panamericana; 2008. | spa |
dc.relation.references | 97. Külkamp W, Feunteun Y, Junior NGB. Concurrent validity and reliability of self-selected movement velocity for resistance training monitoring in close grip pull-down and knee extension. Science & Sports. 2021;36(2021):460-469 | spa |
dc.relation.references | 98. McManis B, Baumgartner T, Wuest D. Objectivity and reliability of the 90° push-up test. Meas Phys Educ Exerc Sci. 2000;4(1):57–67. | spa |
dc.relation.references | 99. Lopategui Corsino E. Batería de pruebas para medir los componentes de la aptitud física relacionados con la salud [Internet]. Saludmed; 2016 [citado 29 Nov 2022]. Disponible en: http://www.saludmed.com/labsfisiologiaejercicio/aptitudfisica/L-J40_Pruebas_Aptitud-Fisica_Salud.pdf | spa |
dc.relation.references | 100. Stojković M, Kukić F, Nedeljković A, Orr RM, Dawes JJ, Čvorović A, et al. Effects of a physical training programme on anthropometric and fitness measures in obese and overweight police trainees and officers. S Afr J Sports Med. 2021;43(3):63–76. | spa |
dc.relation.references | 101. American Alliance for Health, Physical Education, Recreation, and Dance. Physical best: The american alliance physical fitness education & assessment program. London: The Alliance; 1988. | spa |
dc.relation.references | 102. Instituto Distrital de Recreacion y Deporte. Protocolo de pruebas físicas proceso de cualificación en temas bici, referente a la estrategia “Bogotá pedalea”. Bogotá: Alcaldia de Bogotá; 2022. | spa |
dc.relation.references | 103. Bustos-Viviescas BJ, Acevedo-Mindiola AA, Lozano-Zapata RE. Valores de fuerza prensil de mano en sujetos aparentemente sanos de la ciudad de Cúcuta, Colombia. MedUNAB. 2019;21(3):363–77. | spa |
dc.relation.references | 104. Harris NK, Cronin J, Taylor K, Boris J, Sheppard J. Understanding position transducer technology for strength and conditioning practitioners. Strength Cond J. 2010;32(4):66–79. | spa |
dc.relation.references | 105. Albalá B. Validez y fiabilidad de un sensor basado en acelerometría y de un transductor lineal de posición para medir la velocidad de ejecución en el ejercicio de press de banca [Internet]. [Trabajo de Master]. León, España: Universidad de Leon; 2017 [citado 29 Nov 2022]. Disponible en: https://buleria.unileon.es/bitstream/handle/10612/6966/2016-17%20%28SEP%29%20ALBALA_GOMEZ_BORJA.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | 106. Bercot Budziareck M, Pureza Duarte RR, Barbosa-Silva MCG. Reference values and determinants for handgrip strength in healthy subjects. Clin Nutr. 2008;27:357–62. | spa |
dc.relation.references | 107. Wang Y, Liu Y, Hu J, Guan H, Wang Y, Liu M, et al. Association of handgrip strength with all-cause mortality: a nationally longitudinal cohort study in China. J Sci Med Sport. 2022;25(11):878–83. | spa |
dc.relation.references | 108. Lawman HG, Troiano RP, Perna FM, Wang C, Fryar CD, Ogden CL. Associations of relative handgrip strength and cardiovascular disease biomarkers in U.S. Adults, 2011–2012. Am J Prev Med [Internet]. 2015 [citado 29 Nov 2022];50(6):677–683. Disponible en: https://www.ajpmonline.org/article/S0749-3797(15)00731-X/fulltext | spa |
dc.relation.references | 109. Lee J. Associations between handgrip strength and disease-specific mortality including cancer, cardiovascular, and respiratory diseases in older adults: a meta-analysis. J Aging Phys Act. 2020;28(2):320-331. | spa |
dc.relation.references | 110. Stenholm S, Sallinen J, Koster A, Rantanen T, Sainio P, Heliövaara M, Koskinen S. Association between obesity history and hand grip strength in older adults--exploring the roles of inflammation and insulin resistance as mediating factors. J Gerontol A Biol Sci Med Sci. 2011;66(3):341-8. | spa |
dc.relation.references | 111. Curcio B. CL, Gomez M. JF. Fuerza de agarre de los adultos mayores de los centros dia del municipio de Manizales. Rev Asoc Colomb Gerontol Geriatr. 2005;19(4):849–58. | spa |
dc.relation.references | 112. Hincapié OL. Elaboración de estándares de la fuerza de agarre en individuos sanos entre 20 y 70 años residentes en la localidad de Usaquén , Bogotá. Rev Colomb Rehabil. 2007;5–20. | spa |
dc.relation.references | 113. Hulens M, Vansant G, Lysens R, Claessens AL, Muls E, Brumagne S. Study of differences in peripheral muscle strength of lean versus obese women : an allometric approach. Int J Obes. 2001;25:676–81. | spa |
dc.relation.references | 114. Blaiser C De, Roosen P, Willems T, Danneels L, Vanden L, Ridder R De. Is core stability a risk factor for lower extremity injuries in an athletic population ? A systematic review. Phys Ther Sport. 2018;30:48–56. | spa |
dc.relation.references | 115. Liemohn WP, Baumgartner TA, Gagnon LH. Measuring core stability. J Strength Cond Res. 2005;19(3):583-6. . | spa |
dc.relation.references | 116. Robertson LD, Magnusdottir H. Evaluation of criteria associated with abdominal fitness testing. RQES. 1987;58:355–9. | spa |
dc.relation.references | 117. Diener MH, Golding LA, Diener D. Validity and reliability of a one ‐ minute half sit ‐ up test of abdominal strength and endurance. Sport Med Train Rehabil An Int J. 1995;(Junio 2013):37–41. | spa |
dc.relation.references | 118. Instituto de Recración y Deporte. Protocolo de pruebas físicas procedimiento de selección de los guardianes de la ciclovía: protocolos baremos de medición y consideraciones especiales [Internet]. Bogotá: Alcaldía Mayor Bogotá; 2020 [citado 29 Nov 2022]. Disponible en: https://www.gov.idrd.gov.co/sites/default/files/documentos/protocolo_pruebas_fisicas_0.pdf | spa |
dc.relation.references | 119. Google Sites. Evaluación de la Resistencia Muscular. Sit-Up test at home [Internet]. 2012. [citado 29 Nov 2022]. Disponible en: https://sites.google.com/site/grupo2analisis/como-evaluar/test-clasificados/tronco/sit-up-test-at-home | spa |
dc.relation.references | 120. Padilla CJ, Ferreyro FA, Arnold WD. Anthropometry as a readily accessible health assessment of older adults. Exp Gerontol. 2021;153(Nov 2020):111464. | spa |
dc.relation.references | 121. Real Academia de la Lengua Española. Antropometría [Internet]. RAE; 2021 [citado 29 Nov 2022]. Disponible en: https://dle.rae.es/antropometría | spa |
dc.relation.references | 122. Tur J, Bibiloni M. Anthropometry , Body composition and resting energy expenditure in human. Nutrients. 2019;14–6. | spa |
dc.relation.references | 123. Campa F, Toselli S, Mazzilli M, Gobbo LA, Coratella G. Assessment of body composition in athletes: a narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients. 2021 May 12;13(5):1620. | spa |
dc.relation.references | 124. Roca-Reina Z, Lozano-Casanova M, Martínez-Sanz JM, Gutierrez-Hervás A, Hurtado-Sánchez JA, Sospedra I. Diagnóstico y clasificación del sobrepeso y la obesidad : Comparación de criterios. Int. J. Kinanthrop. 2022;2(1):2-12 | spa |
dc.relation.references | 125. Preedy V. Handbook and anthropometry: physical measures of human form in health and disease [Internet]. Nueva York, NY: Springer; 2012. Disponible en: https://books.google.com.co/books?hl=es&lr=&id=DHVjQRuT4AEC&oi=fnd&pg=PR3&ots=RiljuD5X4Z&sig=cZV7P3ZOcSpu8Pin3_OqhgTNEGw&redir_esc=y#v=onepage&q&f=false | spa |
dc.relation.references | 126. Stewart A, Marfell-Jones M, Olds T, Ridder H de. Protocolo Internacional para la valoración antropométrica ISAK [Internet]. Australia: ISAK; 2011 [citado 29 Nov 2022]. Disponible en: www.isakonline.com | spa |
dc.relation.references | 127. Fundación Española del Corazón. La medida del perímetro abdominal es un indicador de enfermedad cardiovascular más fiable que el IMC. [Internet]. Madrid: Fundación Española del Corazón; 2020 [citado 29 Nov 2022]. Disponible en: https://fundaciondelcorazon.com/prensa/notas-de-prensa/2264-medida-perimetro-abdominal-es-indicador-enfermedad-cardiovascular-mas-fiable-imc-.html#:~:text=El perímetro abdominal se puede,inspiración profunda y al momento | spa |
dc.relation.references | 128. Canda AS. Variables deportista de la población antropométricas española. Madrid: ICD; 2012. | spa |
dc.relation.references | 129. García-Poblet M, Cabañas-Armesilla MD, Sospedra I, Esparza-Ros F, Martínez-Sanz JM. Generación de recursos audiovisuales para la realización de medidas antropométricas en sujetos diagnosticados con obesidad. Int J kinanthropometry. 2021;1(1):2–9. | spa |
dc.relation.references | 130. Kagawa M. Differences in the obesity screening ability of 19 anthropometric parameters in young Japanese females : Comparisons of direct measurements , conventional and novel indices. Int J kinanthropometry. 2021;1(Imc):41–52. | spa |
dc.relation.references | 131. World Health Organization. Obesidad y sobrepeso [Internet]. Ginebra: WHO; 2020 [citado 29 Nov 2022]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight | spa |
dc.relation.references | 132. De Cos AI, Gutiérrez-Medina S, Luca B, Galdón A, Chacín JS, de Mingo ML, Trifu D, Artola S, Egocheaga I, Soriano T, Vázquez C. Sociedad de Endocrinología, Nutrición y Diabetes de la Comunidad de Madrid (SENDIMAD). Recomendaciones para la práctica clínica en diabetes y obesidad. Los acuerdos de Madrid. Documento consensuado por los grupos de trabajo de las sociedades científicas: SENDIMAD, SOMAMFYC, SEMG Madrid, SEMERGEN Madrid y RedGDPS. Nutr Hosp 2018;35(4):971-978 | spa |
dc.relation.references | 133. Abramowitz MK, Hall CB, Amodu A, Sharma D, Androga L, Hawkins M. Muscle mass, BMI, and mortality among adults in the United States: A population-based cohort study. PLoS One. 2018;13(5):1–16. | spa |
dc.relation.references | 134. Srikanthan P, Horwich TB, Tseng CH. Relation of muscle mass and fat mass to cardiovascular disease mortality. Am J Cardiol. 2016;117(8):1355–60. | spa |
dc.relation.references | 135. Biospace. InBody 570. Manual de usuario [Internet]. USA: Biospace Co., Ltd. ; 1996 [citado 29 Nov 2022Disponible en: http://inbodyargentina.com.ar/descargas/manual-inbody-570.pdf | spa |
dc.relation.references | 136. Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index , waist circumference and waist : hip ratio as predictors of cardiovascular risk — a review of the literature. Eur J Clin Nutr. 2009;64(1):16–22. | spa |
dc.relation.references | 137. Hernández J, Moncada O, Domínguez E, Díaz O, Arnold Y, García D, et al. Valor de corte del índice cintura / cadera como predictor independiente de disglucemias. Rev Cuba Endocrinol. 2020;30(3):1–22 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.subject.lemb | Aptitud física - Estudio de casos - Investigaciones | |
dc.subject.lemb | Aptitudes físicas - Investigaciones | |
dc.subject.lemb | Obesidad mórbida - Investigaciones | |
dc.subject.lemb | Mutación - Investigaciones | |
dc.subject.lemb | Leptina - Investigaciones | |
dc.subject.proposal | Aptitud física | spa |
dc.subject.proposal | Leptina | spa |
dc.subject.proposal | Mutación | spa |
dc.subject.proposal | Obesidad | spa |
dc.subject.proposal | Antropometría | spa |
dc.subject.proposal | Prueba de ejercicio. | spa |
dc.subject.proposal | Physical fitness | eng |
dc.subject.proposal | Leptin | eng |
dc.subject.proposal | Mutation | eng |
dc.subject.proposal | Obesity | eng |
dc.subject.proposal | Anthropometry | eng |
dc.subject.proposal | Exercise test | eng |
dc.title.translated | Physical fitness and body composition in patients with morbid obesity due to mutation in the leptin gene: case series | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |