Mostrar el registro sencillo del ítem

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.contributor.advisorRamos Parra, Yadi Johaira
dc.contributor.authorTorres Corredor, Angela Yiceth
dc.contributor.authorFigueredo Acero, Lineth Zulay
dc.date.accessioned2024-11-01T15:31:56Z
dc.date.available2024-11-01T15:31:56Z
dc.date.issued2021-11-18
dc.identifier.urihttps://repositorio.uniboyaca.edu.co/handle/uniboyaca/983
dc.description.abstractEn este artículo se presenta un trabajo de desarrollo dinámico donde se dan a conocer los resultados obtenidos mediante la investigación desarrollada frente a la actual pandemia del Covid 19, tratando principalmente la relación del SARS-CoV-2 en el agua residual. Donde se determinarán los métodos y procesos que son utilizados actualmente para el monitoreo y eliminación del Covid -19 en el tratamiento de agua residual, se establecerá cómo la epidemiología basada en agua residual puede ayudar al control y monitoreo del virus a nivel internacional en el tratamiento de agua residual y por último se describirán las experiencias relacionadas con la remoción del Covid-19 en sistemas de tratamiento de aguas residuales internacionalmente. Con base en la información se analizará la relevancia de la cuantificación y los métodos de tratamiento aplicados en aguas residuales para el control de SARS CoV-2 y su utilidad como herramientas de control epidemiológico de la enfermedad COVID-19. Para este estudio se realizará una búsqueda en base de datos como lo son Elseiver, Scielo, Science Direct y MedRxiv, buscando literatura previa sobre el SARS-CoV-2, así como los hallazgos actuales relacionados con el tratamiento, vigilancia y monitoreo en las aguas residuales. De tal modo que se incluyeron estudios epidemiológicos, experimentales y/o ambientales, que analizaron la presencia y/o infectividad de SARS-CoV-2 en muestras de agua residual, publicados en inglés, desde marzo de 2020 hasta junio de 2021 De manera general se concluye que la epidemiología basada en aguas residuales, es una herramienta que permite monitorear el comportamiento del virus ayudando a prevenir el aumento de contagios, dado que posibilita un diagnostico referente a la población que se encuentra compartiendo una red de alcantarillado. Este estudio permitió exponer que las aguas residuales de un afluente que se encuentran contaminadas con SARS-CoV-2 después de ser tratadas en un proceso de depuración con tratamientos primarios, secundarias y terciarios presentan un efluente libre de este virus (tomado del texto)spa
dc.description.tableofcontentsIntroducción 10 -- Metodología 12 -- Resultados 12 -- Métodos y procesos utilizados actualmente para el monitoreo y cuantificación del SARS-CoV-2 en el tratamiento de agua residual 21 -- Vigilancia epidemiológica de sars-cov-2 basada en aguas residuales 24 -- Remoción del SARS-CoV-2 en sistemas de tratamiento de aguas residuales 29 -- Conclusiones 31 -- Referencias 32spa
dc.format.extent43 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Boyacáspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleDescripción de la cuantificación del COVID 19 en aguas residuales como una herramienta de control epidemiológica para el seguimiento y monitoreo del virus: una revisiónspa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Sanitario(a)spa
dc.description.programAdministración de Empresasspa
dc.identifier.barcode4477
dc.identifier.instnameUniversidad Boyacáspa
dc.identifier.reponameRepositorio Universidad de Boyacáspa
dc.identifier.repourlhttps://repositorio.uniboyaca.edu.cospa
dc.publisher.facultyFacultad de Ciencias e Ingenieríaspa
dc.publisher.placeColombiaspa
dc.publisher.placeBoyacáspa
dc.publisher.placeTunjaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdeel, M., Farooq, T., Shakoor, N., Ahmar, S., Fiaz, S., White, J. C., Gardea-Torresdey, J. L., Mora-Poblete, F., & Rui, Y. (2021). COVID-19 and Nanoscience in the Developing World: Rapid Detection and Remediation in Wastewater. En Nanomaterials (Vol. 11, Número 4). https://doi.org/10.3390/nano11040991spa
dc.relation.referencesAhmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., Tscharke, B., Verhagen, R., Smith, W. J. M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V., & Mueller, J. F. (2020a). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment, 728, 138764. https://doi.org/10.1016/j.scitotenv.2020.138764spa
dc.relation.referencesAhmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., Tscharke, B., Verhagen, R., Smith, W. J. M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V, & Mueller, J. F. (2020b). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of The Total Environment, 728, 138764. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138764spa
dc.relation.referencesAlygizakis, N., Markou, A. N., Rousis, N. I., Galani, A., Avgeris, M., Adamopoulos, P. G., Scorilas, A., Lianidou, E. S., Paraskevis, D., Tsiodras, S., Tsakris, A., Dimopoulos, M. A., & Thomaidis, N. S. (2021). Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. TrAC - Trends in Analytical Chemistry, 134, 116125. https://doi.org/10.1016/j.trac.2020.116125spa
dc.relation.referencesBalboa, S., Mauricio-Iglesias, M., Rodriguez, S., Martínez-Lamas, L., Vasallo, F. J., Regueiro, B., & Lema, J. M. (2020). The fate of SARS-CoV-2 in WWTPs points out the sludge line as a suitable spot for monitoring. medRxiv, 2020.05.25.20112706. https://doi.org/10.1101/2020.05.25.20112706spa
dc.relation.referencesBender, L. (2020). Mensajes y acciones importantes para la prevención y el control del COVID-19 en las escuelas. Unicef, 1-14. https://www.unicef.org/lac/sites/unicef.org.lac/files/2018-04/20160217_Nota_Tecnica_Prevencion-Zika_Escuelas_Esp.pdfspa
dc.relation.referencesBosch, A., Guix, S., Sano, D., & Pintó, R. M. (2008). New tools for the study and direct surveillance of viral pathogens in water. Current Opinion in Biotechnology, 19(3), 295-301. https://doi.org/https://doi.org/10.1016/j.copbio.2008.04.006spa
dc.relation.referencesCarducci, A., Federigi, I., Liu, D., Thompson, J. R., & Verani, M. (2020). Making Waves: Coronavirus detection, presence and persistence in the water environment: State of the art and knowledge needs for public health. Water Research, 179, 115907. https://doi.org/https://doi.org/10.1016/j.watres.2020.115907spa
dc.relation.referencesCastiglioni, S., Thomas, K. V, Kasprzyk-Hordern, B., Vandam, L., & Griffiths, P. (2014). Testing wastewater to detect illicit drugs: State of the art, potential and research needs. Science of The Total Environment, 487, 613-620. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.10.034spa
dc.relation.referencesCheung, K. S., Hung, I. F. N., Chan, P. P. Y., Lung, K. C., Tso, E., Liu, R., Ng, Y. Y., Chu, M. Y., Chung, T. W. H., Tam, A. R., Yip, C. C. Y., Leung, K., Fung, A. Y., Zhang, R. R., Lin, Y., Cheng, H. M., Zhang, A. J. X., To, K. K. W., Chan, K., … Leung, W. K. (2020). Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. 81-95. https://doi.org/10.1053/j.gastro.2020.03.065spa
dc.relation.referencesChin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., Peiris, M., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 1(1), e10. https://doi.org/10.1016/s2666-5247(20)30003-3spa
dc.relation.referencesChoi, P. M., Tscharke, B. J., Donner, E., O’Brien, J. W., Grant, S. C., Kaserzon, S. L., Mackie, R., O’Malley, E., Crosbie, N. D., Thomas, K. V, & Mueller, J. F. (2018). Wastewater-based epidemiology biomarkers: Past, present and future. TrAC Trends in Analytical Chemistry, 105, 453-469. https://doi.org/https://doi.org/10.1016/j.trac.2018.06.004spa
dc.relation.referencesClaro, I. C. M., Cabral, A. D., Augusto, M. R., Duran, A. F. A., Graciosa, M. C. P., Fonseca, F. L. A., Speranca, M. A., & Bueno, R. de F. (2021). Long-term monitoring of SARS-COV-2 RNA in wastewater in Brazil: A more responsive and economical approach. Water Research, 203, 117534. https://doi.org/https://doi.org/10.1016/j.watres.2021.117534spa
dc.relation.referencesCloete, T. E., Da Silva, E., & Nel, L. H. (1998). Removal of waterborne human enteric viruses and coliphages with oxidized coal. Current Microbiology, 37(1), 23-27. https://doi.org/10.1007/s002849900331spa
dc.relation.referencesCruz-Cruz, C., Rodríguez-Dozal, S., Cortez-Lugo, M., Ovilla-Muñoz, M., Carnalla-Cortés, M., Sánchez-Pájaro, A., & Schilmann, A. (2020). Revisión rápida: monitoreo de la presencia e infectividad del virus SARS-CoV-2 y otros coronavirus en aguas residuales. Salud Publica de Mexico, 63(1), 109-119. https://doi.org/10.21149/11783spa
dc.relation.referencesCuadra, T. E., Guadrón Meléndez, A. A., Cruz Aguilar, R. D. J., & Vásquez Rodriguez, E. A. (2021). Factores relevantes sobre el ensayo RT-PCR para la detección de SARS-CoV-2, virus causante del COVID-19. Alerta, Revista científica del Instituto Nacional de Salud, 4(1), 31-39. https://doi.org/10.5377/alerta.v4i1.10060spa
dc.relation.referencesCuevas-Ferrando, E., Randazzo, W., Pérez-Cataluña, A., & Sánchez, G. (2020). HEV Occurrence in Waste and Drinking Water Treatment Plants. Frontiers in Microbiology, 10, 2937. https://doi.org/10.3389/fmicb.2019.02937spa
dc.relation.referencesDaughton, C. (2020). The international imperative to rapidly and inexpensively monitor community-wide Covid-19 infection status and trends. Science of The Total Environment, 726, 138149. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138149spa
dc.relation.referencesDerwerker, R. Van. (1949). La Ingeniería Sanitaria En La Salubridad Internacional*. http://iris.paho.org/xmlui/bitstream/handle/123456789/13316/v28n10p1034.pdf?sequence=1spa
dc.relation.referencesFondo de las Naciones Unidas para la Infancia. (2020). COVID-19: Preguntas frecuentes. https://www.unicef.org/es/coronavirus/lo-que-los-padres-deben-saberspa
dc.relation.referencesFung, T. S., & Liu, D. X. (2019). Human Coronavirus: Host-Pathogen Interaction. Annual Review of Microbiology, 73(1), 529-557. https://doi.org/10.1146/annurev-micro-020518-115759spa
dc.relation.referencesGarcía, M. E. (2006). Virus en aguas de consumo. Higiene y Sanidad Ambiental, 6(6), 173-189. http://www.salud-publica.es/secciones/revista/revistaspdf/bc510159f5f2fa3_Hig.Sanid.Ambient.6.173-189%282006%29.pdfspa
dc.relation.referencesGerba, C. P., Betancourt, W. Q., & Kitajima, M. (2017). How much reduction of virus is needed for recycled water: A continuous changing need for assessment? Water Research, 108, 25-31. https://doi.org/https://doi.org/10.1016/j.watres.2016.11.020spa
dc.relation.referencesGholipour, S., Mohammadi, F., Nikaeen, M., Shamsizadeh, Z., Khazeni, A., Sahbaei, Z., Mousavi, S. M., Ghobadian, M., & Mirhendi, H. (2021). COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. Chemosphere, 273, 129701. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129701spa
dc.relation.referencesGodin, B., Tejeda, L., & Arroyo, B. (2021). SARS-CoV-2: Un salto de las heces a los ecosistemas acuáticos. Revista chilena de infectología, 38(2), 306-307. https://doi.org/10.4067/s0716-10182021000200306spa
dc.relation.referencesormley, M., Aspray, T. J., & Kelly, D. A. (2020). COVID-19: mitigating transmission via wastewater plumbing systems. The Lancet Global Health, 8(5), e643. https://doi.org/10.1016/S2214-109X(20)30112-1spa
dc.relation.referencesGuerrero-Latorre, L., Ballesteros, I., Villacrés-Granda, I., Granda, M. G., Freire-Paspuel, B., & Ríos-Touma, B. (2020). SARS-CoV-2 in river water: Implications in low sanitation countries. Science of The Total Environment, 743, 140832. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140832spa
dc.relation.referencesGuo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0spa
dc.relation.referencesGupta, S., Parker, J., Smits, S., Underwood, J., & Dolwani, S. (2020). Persistent viral shedding of SARS-CoV-2 in faeces – a rapid review. Colorectal Disease, 22(6), 611-620. https://doi.org/10.1111/codi.15138spa
dc.relation.referencesHaramoto, E., Malla, B., Thakali, O., & Kitajima, M. (2020). First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Science of The Total Environment, 737, 140405. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140405spa
dc.relation.referencesHasan, S. W., Ibrahim, Y., Daou, M., Kannout, H., Jan, N., Lopes, A., Alsafar, H., & Yousef, A. F. (2021). Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates. Science of The Total Environment, 764, 142929. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.142929spa
dc.relation.referencesHassard, F., Lundy, L., Singer, A. C., Grimsley, J., & Di Cesare, M. (2021). Innovation in wastewater near-source tracking for rapid identification of COVID-19 in schools. The Lancet Microbe, 2(1), e4-e5. https://doi.org/10.1016/S2666-5247(20)30193-2spa
dc.relation.referencesHolshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S. I., Kim, L., Tong, S., Lu, X., Lindstrom, S., … Pillai, S. K. (2020). First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine, 382(10), 929-936. https://doi.org/10.1056/NEJMoa2001191spa
dc.relation.referencesHuang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England), 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5spa
dc.relation.referencesInstituto Catalán de Nanociencia y Nanotecnología. (2020). Técnicas y sistemas de diagnóstico para COVID-19 : clasificación , características , ventajas y limitaciones Diagnóstico de COVID-19 SARS-CoV-2. NanoB2A - ICN2, 1-10. http://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHEROS/TecnicasDiagnosticoCOVID19-ICN2.pdfspa
dc.relation.referencesJohn, D. E., & Rose, J. B. (2005). Review of Factors Affecting Microbial Survival in Groundwater. Environmental Science & Technology, 39(19), 7345-7356. https://doi.org/10.1021/es047995wspa
dc.relation.referencesKocamemi, B. A., Kurt, H., Sait, A., Sarac, F., Saatci, A. M., & Pakdemirli, B. (2020). SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. medRxiv, 7. https://doi.org/10.1101/2020.05.12.20099358spa
dc.relation.referencesKopperi, H., Tharak, A., Hemalatha, M., Kiran, U., Gokulan, C. G., Mishra, R. K., & Mohan, S. V. (2021). Defining the methodological approach for wastewater-based epidemiological studies—Surveillance of SARS-CoV-2. Environmental Technology and Innovation, 23, 101696. https://doi.org/10.1016/j.eti.2021.101696spa
dc.relation.referencesKumar, M., Patel, A. K., Shah, A. V, Raval, J., Rajpara, N., Joshi, M., & Joshi, C. G. (2020). First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. The Science of the Total Environment, 746, 141326. https://doi.org/10.1016/j.scitotenv.2020.141326spa
dc.relation.referencesLa Rosa, G., Iaconelli, M., Mancini, P., Bonanno Ferraro, G., Veneri, C., Bonadonna, L., Lucentini, L., & Suffredini, E. (2020). First detection of SARS-CoV-2 in untreated wastewaters in Italy. Science of The Total Environment, 736, 139652. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139652spa
dc.relation.referencesLi, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13), 1199-1207. https://doi.org/10.1056/NEJMoa2001316spa
dc.relation.referencesMao, K., Zhang, K., Du, W., Ali, W., Feng, X., & Zhang, H. (2020). The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science & Health, 17, 1-7. https://doi.org/https://doi.org/10.1016/j.coesh.2020.04.006spa
dc.relation.referencesMedema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environmental Science & Technology Letters, 7(7), 511-516. https://doi.org/10.1021/acs.estlett.0c00357spa
dc.relation.referencesMezzanotte, V., Antonelli, M., Citterio, S., & Nurizzo, C. (2007). Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light. Water Environment Research : A Research Publication of the Water Environment Federation, 79(12), 2373-2379. https://doi.org/10.2175/106143007x183763spa
dc.relation.referencesMichael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2020). Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. Journal of Environmental Chemical Engineering, 8(5), 104306. https://doi.org/https://doi.org/10.1016/j.jece.2020.104306spa
dc.relation.referencesMontaña, J. (2015). Aproximación metagenómica para la identificación de enzimas lipolíticas en suelo de busque alto andino del parque nacional natural los nevados. 1-127. https://repository.javeriana.edu.co/handle/10554/17002spa
dc.relation.referencesNemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K. K., Wilkinson, R., & Wiedenheft, B. (2020a). Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Reports Medicine, 1(6), 100098. https://doi.org/10.1016/j.xcrm.2020.100098spa
dc.relation.referencesNemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K. K., Wilkinson, R., & Wiedenheft, B. (2020b). Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Reports Medicine, 1(6), 100098. https://doi.org/https://doi.org/10.1016/j.xcrm.2020.100098spa
dc.relation.referencesPanchal, D., Tripathy, P., Prakash, O., Sharma, A., & Pal, S. (2021). SARS-CoV-2: Fate in water environments and sewage surveillance as an early warning system. Water Science and Technology, 84(1), 1-15. https://doi.org/10.2166/wst.2021.146spa
dc.relation.referencesPeccia, J., Zulli, A., Brackney, D. E., Grubaugh, N. D., Kaplan, E. H., Casanovas-Massana, A., Ko, A. I., Malik, A. A., Wang, D., Wang, M., Warren, J. L., Weinberger, D. M., Arnold, W., & Omer, S. B. (2020). Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology, 38(10), 1164-1167. https://doi.org/10.1038/s41587-020-0684-zspa
dc.relation.referencesPerera, C. L., & Acevedo, A. M. (2018). Nuevas tendencias en el diagnóstico de enfermedades virales en los animales New trends in the diagnosis of animal viral diseases. Revista de Salud Animal, 40(3), 1-10.spa
dc.relation.referencesPhan, L. T., Nguyen, T. V, Luong, Q. C., Nguyen, T. V, Nguyen, H. T., Le, H. Q., Nguyen, T. T., Cao, T. M., & Pham, Q. D. (2020). Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. New England Journal of Medicine, 382(9), 872-874. https://doi.org/10.1056/NEJMc2001272spa
dc.relation.referencesQiu, Y., Lee, B. E., Neumann, N., Ashbolt, N., Craik, S., Maal-Bared, R., & Pang, X. L. (2015). Assessment of human virus removal during municipal wastewater treatment in Edmonton, Canada. Journal of Applied Microbiology, 119(6), 1729-1739. https://doi.org/10.1111/jam.12971spa
dc.relation.referencesRandazzo, Walter, E., Sanjuan, R., Domingo-Calap, P., & Sanchez, G. (2020). Metropolitan Wastewater Analysis for COVID-19 Epidemiological Surveillance. medRxiv. https://doi.org/10.1101/2020.04.23.20076679spa
dc.relation.referencesRandazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Research, 181. https://doi.org/10.1016/j.watres.2020.115942spa
dc.relation.referencesRimoldi, S. G., Stefani, F., Gigantiello, A., Polesello, S., Comandatore, F., Mileto, D., Maresca, M., Longobardi, C., Mancon, A., Romeri, F., Pagani, C., Cappelli, F., Roscioli, C., Moja, L., Gismondo, M. R., & Salerno, F. (2020). Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Science of The Total Environment, 744, 140911. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140911spa
dc.relation.referencesRusiñol, M., Martínez-Puchol, S., Forés, E., Itarte, M., Girones, R., & Bofill-Mas, S. (2020). Concentration methods for the quantification of coronavirus and other potentially pandemic enveloped virus from wastewater. Current Opinion in Environmental Science & Health, 17, 21-28. https://doi.org/https://doi.org/10.1016/j.coesh.2020.08.002spa
dc.relation.referencesSaba, B., Hasan, S. W., Kjellerup, B. V., & Christy, A. D. (2021). Capacity of existing wastewater treatment plants to treat SARS-CoV-2. A review. Bioresource Technology Reports, 15(June), 100737. https://doi.org/10.1016/j.biteb.2021.100737spa
dc.relation.referencesSandin, D., & Algorta, G. (2003). Métodos de estudio de bacterias y virus Métodos diagnósticos. Temas De Bacteriología Y Virología Médica, 81-98.spa
dc.relation.referencesSanJuan-Reyes, S., Gómez-Oliván, L. M., & Islas-Flores, H. (2021). COVID-19 in the environment. Chemosphere, 263, 127973. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127973spa
dc.relation.referencesSenante, M. M., Sancho, F. H., & Garrido, R. S. (2012). Estado actual y evolución del saneamiento y la depuración de aguas residuales en el contexto nacional e internacional. Anales de Geografia de la Universidad Complutense, 32(1), 69-89. https://doi.org/10.5209/rev-AGUC.2012.v32.n1.39309spa
dc.relation.referencesSerra-Compte, A., González, S., Arnaldos, M., Berlendis, S., Courtois, S., Loret, J. F., Schlosser, O., Yáñez, A. M., Soria-Soria, E., Fittipaldi, M., Saucedo, G., Pinar-Méndez, A., Paraira, M., Galofré, B., Lema, J. M., Balboa, S., Mauricio-Iglesias, M., Bosch, A., Pintó, R. M., … Litrico, X. (2021). Elimination of SARS-CoV-2 along wastewater and sludge treatment processes. Water Research, 202, 117435. https://doi.org/https://doi.org/10.1016/j.watres.2021.117435spa
dc.relation.referencesShereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91-98. https://doi.org/https://doi.org/10.1016/j.jare.2020.03.005spa
dc.relation.referencesSimmons, F. J., & Xagoraraki, I. (2011). Release of infectious human enteric viruses by full-scale wastewater utilities. Water Research, 45(12), 3590-3598. https://doi.org/https://doi.org/10.1016/j.watres.2011.04.001spa
dc.relation.referencesSims, N., & Kasprzyk-hordern, B. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information . January.spa
dc.relation.referencesSims, N., & Kasprzyk-Hordern, B. (2020). Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environment International, 139, 105689. https://doi.org/https://doi.org/10.1016/j.envint.2020.105689spa
dc.relation.referencesSolanet, M. A. (2020). Pandemia : los desafíos múltiples que en el presente le plantea al porvenir. January.spa
dc.relation.referencesTempleton, M. R., Andrews, R. C., & Hofmann, R. (2005). Inactivation of particle-associated viral surrogates by ultraviolet light. Water Research, 39(15), 3487-3500. https://doi.org/10.1016/j.watres.2005.06.010spa
dc.relation.referencesThompson, J. R., Nancharaiah, Y. V, Gu, X., Lee, W. L., Rajal, V. B., Haines, M. B., Girones, R., Ng, L. C., Alm, E. J., & Wuertz, S. (2020). Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Research, 184, 116181. https://doi.org/https://doi.org/10.1016/j.watres.2020.116181spa
dc.relation.referencesTroncoso, A., Cueto, O. A., Rivera, J. H., & Herrera, J. R. (2020). Un breve análisis de la mortalidad del Covid-19 en países de América Latina A brief analysis of Covid-19 mortality in Latin American countries. 2(1), 1-7.spa
dc.relation.referencesvan Doorn, A. S., Meijer, B., Frampton, C. M. A., Barclay, M. L., & de Boer, N. K. H. (2020). Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Alimentary Pharmacology and Therapeutics, 52(8), 1276-1288. https://doi.org/10.1111/apt.16036spa
dc.relation.referencesWang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA, 323(11), 1061-1069. https://doi.org/10.1001/jama.2020.1585spa
dc.relation.referencesWang, J., Feng, H., Zhang, S., Ni, Z., Ni, L., Chen, Y., Zhuo, L., Zhong, Z., & Qu, T. (2020). SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital. International Journal of Infectious Diseases, 94(January 2019), 103-106. https://doi.org/10.1016/j.ijid.2020.04.024spa
dc.relation.referencesWesthaus, S., Weber, F.-A., Schiwy, S., Linnemann, V., Brinkmann, M., Widera, M., Greve, C., Janke, A., Hollert, H., Wintgens, T., & Ciesek, S. (2021). Detection of SARS-CoV-2 in raw and treated wastewater in Germany – Suitability for COVID-19 surveillance and potential transmission risks. Science of The Total Environment, 751, 141750. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141750spa
dc.relation.referencesWu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., Yin, H., Xiao, Q., Tang, Y., Qu, X., Kuang, L., Fang, X., Mishra, N., Lu, J., Shan, H., Jiang, G., & Huang, X. (2020). Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. The Lancet Gastroenterology and Hepatology, 5(5), 434-435. https://doi.org/10.1016/S2468-1253(20)30083-2spa
dc.relation.referencesWurtzer, S., Marechal, V., Mouchel, J. M., Maday, Y., Teyssou, R., Richard, E., Almayrac, J. L., & Moulin, L. (2020). Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv. https://doi.org/10.1101/2020.04.12.20062679spa
dc.relation.referencesWurtzer, Sebastien, Marechal, V., Mouchel, J.-M., Maday, Y., Teyssou, R., Richard, E., Almayrac, J. L., & Moulin, L. (2020). Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv, 2020.04.12.20062679. https://doi.org/10.1101/2020.04.12.20062679spa
dc.relation.referencesYeo, C., Kaushal, S., & Yeo, D. (2020). Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? The Lancet Gastroenterology and Hepatology, 5(4), 335-337. https://doi.org/10.1016/S2468-1253(20)30048-0spa
dc.relation.referencesZanetti, F., De Luca, G., & Sacchetti, R. (2006). Microbe removal in secondary effluent by filtration. Annals of Microbiology, 56(4), 313. https://doi.org/10.1007/BF03175023spa
dc.relation.referencesZhang, D., Ling, H., Huang, X., Li, J., Li, W., Yi, C., Zhang, T., Jiang, Y., He, Y., Deng, S., Zhang, X., Wang, X., Liu, Y., Li, G., & Qu, J. (2020). Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Science of The Total Environment, 741, 140445. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140445spa
dc.relation.referencesZhang, D., Yang, Y., Huang, X., Jiang, J., Li, M., Zhang, X., Ling, H., Li, J., Liu, Y., Li, G., Li, W., Yi, C., Zhang, T., Jiang, Y., Xiong, Y., He, Z., Wang, X., Deng, S., Zhao, P., & Qu, J. (2020). SARS-CoV-2 spillover into hospital outdoor environments. medRxiv, 2020.05.12.20097105. https://doi.org/10.1101/2020.05.12.20097105spa
dc.relation.referencesZhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., Lou, Y., Gao, D., Yang, L., He, D., & Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214-217. https://doi.org/https://doi.org/10.1016/j.ijid.2020.01.050spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.lembAguas residuales - Investigaciones
dc.subject.lembCOVID 19 - Virus - Investigaciones
dc.subject.lembVirus - COVID 19 - Investigaciones
dc.subject.lembEpidemiología - Control - Investigaciones
dc.subject.lembPandemia - Colombia- Investigaciones
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)