Mostrar el registro sencillo del ítem
Descripción de la cuantificación del COVID 19 en aguas residuales como una herramienta de control epidemiológica para el seguimiento y monitoreo del virus: una revisión
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.contributor.advisor | Ramos Parra, Yadi Johaira | |
dc.contributor.author | Torres Corredor, Angela Yiceth | |
dc.contributor.author | Figueredo Acero, Lineth Zulay | |
dc.date.accessioned | 2024-11-01T15:31:56Z | |
dc.date.available | 2024-11-01T15:31:56Z | |
dc.date.issued | 2021-11-18 | |
dc.identifier.uri | https://repositorio.uniboyaca.edu.co/handle/uniboyaca/983 | |
dc.description.abstract | En este artículo se presenta un trabajo de desarrollo dinámico donde se dan a conocer los resultados obtenidos mediante la investigación desarrollada frente a la actual pandemia del Covid 19, tratando principalmente la relación del SARS-CoV-2 en el agua residual. Donde se determinarán los métodos y procesos que son utilizados actualmente para el monitoreo y eliminación del Covid -19 en el tratamiento de agua residual, se establecerá cómo la epidemiología basada en agua residual puede ayudar al control y monitoreo del virus a nivel internacional en el tratamiento de agua residual y por último se describirán las experiencias relacionadas con la remoción del Covid-19 en sistemas de tratamiento de aguas residuales internacionalmente. Con base en la información se analizará la relevancia de la cuantificación y los métodos de tratamiento aplicados en aguas residuales para el control de SARS CoV-2 y su utilidad como herramientas de control epidemiológico de la enfermedad COVID-19. Para este estudio se realizará una búsqueda en base de datos como lo son Elseiver, Scielo, Science Direct y MedRxiv, buscando literatura previa sobre el SARS-CoV-2, así como los hallazgos actuales relacionados con el tratamiento, vigilancia y monitoreo en las aguas residuales. De tal modo que se incluyeron estudios epidemiológicos, experimentales y/o ambientales, que analizaron la presencia y/o infectividad de SARS-CoV-2 en muestras de agua residual, publicados en inglés, desde marzo de 2020 hasta junio de 2021 De manera general se concluye que la epidemiología basada en aguas residuales, es una herramienta que permite monitorear el comportamiento del virus ayudando a prevenir el aumento de contagios, dado que posibilita un diagnostico referente a la población que se encuentra compartiendo una red de alcantarillado. Este estudio permitió exponer que las aguas residuales de un afluente que se encuentran contaminadas con SARS-CoV-2 después de ser tratadas en un proceso de depuración con tratamientos primarios, secundarias y terciarios presentan un efluente libre de este virus (tomado del texto) | spa |
dc.description.tableofcontents | Introducción 10 -- Metodología 12 -- Resultados 12 -- Métodos y procesos utilizados actualmente para el monitoreo y cuantificación del SARS-CoV-2 en el tratamiento de agua residual 21 -- Vigilancia epidemiológica de sars-cov-2 basada en aguas residuales 24 -- Remoción del SARS-CoV-2 en sistemas de tratamiento de aguas residuales 29 -- Conclusiones 31 -- Referencias 32 | spa |
dc.format.extent | 43 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad de Boyacá | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Descripción de la cuantificación del COVID 19 en aguas residuales como una herramienta de control epidemiológica para el seguimiento y monitoreo del virus: una revisión | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Sanitario(a) | spa |
dc.description.program | Administración de Empresas | spa |
dc.identifier.barcode | 4477 | |
dc.identifier.instname | Universidad Boyacá | spa |
dc.identifier.reponame | Repositorio Universidad de Boyacá | spa |
dc.identifier.repourl | https://repositorio.uniboyaca.edu.co | spa |
dc.publisher.faculty | Facultad de Ciencias e Ingeniería | spa |
dc.publisher.place | Colombia | spa |
dc.publisher.place | Boyacá | spa |
dc.publisher.place | Tunja | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Adeel, M., Farooq, T., Shakoor, N., Ahmar, S., Fiaz, S., White, J. C., Gardea-Torresdey, J. L., Mora-Poblete, F., & Rui, Y. (2021). COVID-19 and Nanoscience in the Developing World: Rapid Detection and Remediation in Wastewater. En Nanomaterials (Vol. 11, Número 4). https://doi.org/10.3390/nano11040991 | spa |
dc.relation.references | Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., Tscharke, B., Verhagen, R., Smith, W. J. M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V., & Mueller, J. F. (2020a). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment, 728, 138764. https://doi.org/10.1016/j.scitotenv.2020.138764 | spa |
dc.relation.references | Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O’Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., Tscharke, B., Verhagen, R., Smith, W. J. M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V, & Mueller, J. F. (2020b). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of The Total Environment, 728, 138764. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138764 | spa |
dc.relation.references | Alygizakis, N., Markou, A. N., Rousis, N. I., Galani, A., Avgeris, M., Adamopoulos, P. G., Scorilas, A., Lianidou, E. S., Paraskevis, D., Tsiodras, S., Tsakris, A., Dimopoulos, M. A., & Thomaidis, N. S. (2021). Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. TrAC - Trends in Analytical Chemistry, 134, 116125. https://doi.org/10.1016/j.trac.2020.116125 | spa |
dc.relation.references | Balboa, S., Mauricio-Iglesias, M., Rodriguez, S., Martínez-Lamas, L., Vasallo, F. J., Regueiro, B., & Lema, J. M. (2020). The fate of SARS-CoV-2 in WWTPs points out the sludge line as a suitable spot for monitoring. medRxiv, 2020.05.25.20112706. https://doi.org/10.1101/2020.05.25.20112706 | spa |
dc.relation.references | Bender, L. (2020). Mensajes y acciones importantes para la prevención y el control del COVID-19 en las escuelas. Unicef, 1-14. https://www.unicef.org/lac/sites/unicef.org.lac/files/2018-04/20160217_Nota_Tecnica_Prevencion-Zika_Escuelas_Esp.pdf | spa |
dc.relation.references | Bosch, A., Guix, S., Sano, D., & Pintó, R. M. (2008). New tools for the study and direct surveillance of viral pathogens in water. Current Opinion in Biotechnology, 19(3), 295-301. https://doi.org/https://doi.org/10.1016/j.copbio.2008.04.006 | spa |
dc.relation.references | Carducci, A., Federigi, I., Liu, D., Thompson, J. R., & Verani, M. (2020). Making Waves: Coronavirus detection, presence and persistence in the water environment: State of the art and knowledge needs for public health. Water Research, 179, 115907. https://doi.org/https://doi.org/10.1016/j.watres.2020.115907 | spa |
dc.relation.references | Castiglioni, S., Thomas, K. V, Kasprzyk-Hordern, B., Vandam, L., & Griffiths, P. (2014). Testing wastewater to detect illicit drugs: State of the art, potential and research needs. Science of The Total Environment, 487, 613-620. https://doi.org/https://doi.org/10.1016/j.scitotenv.2013.10.034 | spa |
dc.relation.references | Cheung, K. S., Hung, I. F. N., Chan, P. P. Y., Lung, K. C., Tso, E., Liu, R., Ng, Y. Y., Chu, M. Y., Chung, T. W. H., Tam, A. R., Yip, C. C. Y., Leung, K., Fung, A. Y., Zhang, R. R., Lin, Y., Cheng, H. M., Zhang, A. J. X., To, K. K. W., Chan, K., … Leung, W. K. (2020). Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. 81-95. https://doi.org/10.1053/j.gastro.2020.03.065 | spa |
dc.relation.references | Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., Peiris, M., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 1(1), e10. https://doi.org/10.1016/s2666-5247(20)30003-3 | spa |
dc.relation.references | Choi, P. M., Tscharke, B. J., Donner, E., O’Brien, J. W., Grant, S. C., Kaserzon, S. L., Mackie, R., O’Malley, E., Crosbie, N. D., Thomas, K. V, & Mueller, J. F. (2018). Wastewater-based epidemiology biomarkers: Past, present and future. TrAC Trends in Analytical Chemistry, 105, 453-469. https://doi.org/https://doi.org/10.1016/j.trac.2018.06.004 | spa |
dc.relation.references | Claro, I. C. M., Cabral, A. D., Augusto, M. R., Duran, A. F. A., Graciosa, M. C. P., Fonseca, F. L. A., Speranca, M. A., & Bueno, R. de F. (2021). Long-term monitoring of SARS-COV-2 RNA in wastewater in Brazil: A more responsive and economical approach. Water Research, 203, 117534. https://doi.org/https://doi.org/10.1016/j.watres.2021.117534 | spa |
dc.relation.references | Cloete, T. E., Da Silva, E., & Nel, L. H. (1998). Removal of waterborne human enteric viruses and coliphages with oxidized coal. Current Microbiology, 37(1), 23-27. https://doi.org/10.1007/s002849900331 | spa |
dc.relation.references | Cruz-Cruz, C., Rodríguez-Dozal, S., Cortez-Lugo, M., Ovilla-Muñoz, M., Carnalla-Cortés, M., Sánchez-Pájaro, A., & Schilmann, A. (2020). Revisión rápida: monitoreo de la presencia e infectividad del virus SARS-CoV-2 y otros coronavirus en aguas residuales. Salud Publica de Mexico, 63(1), 109-119. https://doi.org/10.21149/11783 | spa |
dc.relation.references | Cuadra, T. E., Guadrón Meléndez, A. A., Cruz Aguilar, R. D. J., & Vásquez Rodriguez, E. A. (2021). Factores relevantes sobre el ensayo RT-PCR para la detección de SARS-CoV-2, virus causante del COVID-19. Alerta, Revista científica del Instituto Nacional de Salud, 4(1), 31-39. https://doi.org/10.5377/alerta.v4i1.10060 | spa |
dc.relation.references | Cuevas-Ferrando, E., Randazzo, W., Pérez-Cataluña, A., & Sánchez, G. (2020). HEV Occurrence in Waste and Drinking Water Treatment Plants. Frontiers in Microbiology, 10, 2937. https://doi.org/10.3389/fmicb.2019.02937 | spa |
dc.relation.references | Daughton, C. (2020). The international imperative to rapidly and inexpensively monitor community-wide Covid-19 infection status and trends. Science of The Total Environment, 726, 138149. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138149 | spa |
dc.relation.references | Derwerker, R. Van. (1949). La Ingeniería Sanitaria En La Salubridad Internacional*. http://iris.paho.org/xmlui/bitstream/handle/123456789/13316/v28n10p1034.pdf?sequence=1 | spa |
dc.relation.references | Fondo de las Naciones Unidas para la Infancia. (2020). COVID-19: Preguntas frecuentes. https://www.unicef.org/es/coronavirus/lo-que-los-padres-deben-saber | spa |
dc.relation.references | Fung, T. S., & Liu, D. X. (2019). Human Coronavirus: Host-Pathogen Interaction. Annual Review of Microbiology, 73(1), 529-557. https://doi.org/10.1146/annurev-micro-020518-115759 | spa |
dc.relation.references | García, M. E. (2006). Virus en aguas de consumo. Higiene y Sanidad Ambiental, 6(6), 173-189. http://www.salud-publica.es/secciones/revista/revistaspdf/bc510159f5f2fa3_Hig.Sanid.Ambient.6.173-189%282006%29.pdf | spa |
dc.relation.references | Gerba, C. P., Betancourt, W. Q., & Kitajima, M. (2017). How much reduction of virus is needed for recycled water: A continuous changing need for assessment? Water Research, 108, 25-31. https://doi.org/https://doi.org/10.1016/j.watres.2016.11.020 | spa |
dc.relation.references | Gholipour, S., Mohammadi, F., Nikaeen, M., Shamsizadeh, Z., Khazeni, A., Sahbaei, Z., Mousavi, S. M., Ghobadian, M., & Mirhendi, H. (2021). COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. Chemosphere, 273, 129701. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.129701 | spa |
dc.relation.references | Godin, B., Tejeda, L., & Arroyo, B. (2021). SARS-CoV-2: Un salto de las heces a los ecosistemas acuáticos. Revista chilena de infectología, 38(2), 306-307. https://doi.org/10.4067/s0716-10182021000200306 | spa |
dc.relation.references | ormley, M., Aspray, T. J., & Kelly, D. A. (2020). COVID-19: mitigating transmission via wastewater plumbing systems. The Lancet Global Health, 8(5), e643. https://doi.org/10.1016/S2214-109X(20)30112-1 | spa |
dc.relation.references | Guerrero-Latorre, L., Ballesteros, I., Villacrés-Granda, I., Granda, M. G., Freire-Paspuel, B., & Ríos-Touma, B. (2020). SARS-CoV-2 in river water: Implications in low sanitation countries. Science of The Total Environment, 743, 140832. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140832 | spa |
dc.relation.references | Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0 | spa |
dc.relation.references | Gupta, S., Parker, J., Smits, S., Underwood, J., & Dolwani, S. (2020). Persistent viral shedding of SARS-CoV-2 in faeces – a rapid review. Colorectal Disease, 22(6), 611-620. https://doi.org/10.1111/codi.15138 | spa |
dc.relation.references | Haramoto, E., Malla, B., Thakali, O., & Kitajima, M. (2020). First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Science of The Total Environment, 737, 140405. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140405 | spa |
dc.relation.references | Hasan, S. W., Ibrahim, Y., Daou, M., Kannout, H., Jan, N., Lopes, A., Alsafar, H., & Yousef, A. F. (2021). Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates. Science of The Total Environment, 764, 142929. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.142929 | spa |
dc.relation.references | Hassard, F., Lundy, L., Singer, A. C., Grimsley, J., & Di Cesare, M. (2021). Innovation in wastewater near-source tracking for rapid identification of COVID-19 in schools. The Lancet Microbe, 2(1), e4-e5. https://doi.org/10.1016/S2666-5247(20)30193-2 | spa |
dc.relation.references | Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S. I., Kim, L., Tong, S., Lu, X., Lindstrom, S., … Pillai, S. K. (2020). First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine, 382(10), 929-936. https://doi.org/10.1056/NEJMoa2001191 | spa |
dc.relation.references | Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England), 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 | spa |
dc.relation.references | Instituto Catalán de Nanociencia y Nanotecnología. (2020). Técnicas y sistemas de diagnóstico para COVID-19 : clasificación , características , ventajas y limitaciones Diagnóstico de COVID-19 SARS-CoV-2. NanoB2A - ICN2, 1-10. http://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHEROS/TecnicasDiagnosticoCOVID19-ICN2.pdf | spa |
dc.relation.references | John, D. E., & Rose, J. B. (2005). Review of Factors Affecting Microbial Survival in Groundwater. Environmental Science & Technology, 39(19), 7345-7356. https://doi.org/10.1021/es047995w | spa |
dc.relation.references | Kocamemi, B. A., Kurt, H., Sait, A., Sarac, F., Saatci, A. M., & Pakdemirli, B. (2020). SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. medRxiv, 7. https://doi.org/10.1101/2020.05.12.20099358 | spa |
dc.relation.references | Kopperi, H., Tharak, A., Hemalatha, M., Kiran, U., Gokulan, C. G., Mishra, R. K., & Mohan, S. V. (2021). Defining the methodological approach for wastewater-based epidemiological studies—Surveillance of SARS-CoV-2. Environmental Technology and Innovation, 23, 101696. https://doi.org/10.1016/j.eti.2021.101696 | spa |
dc.relation.references | Kumar, M., Patel, A. K., Shah, A. V, Raval, J., Rajpara, N., Joshi, M., & Joshi, C. G. (2020). First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. The Science of the Total Environment, 746, 141326. https://doi.org/10.1016/j.scitotenv.2020.141326 | spa |
dc.relation.references | La Rosa, G., Iaconelli, M., Mancini, P., Bonanno Ferraro, G., Veneri, C., Bonadonna, L., Lucentini, L., & Suffredini, E. (2020). First detection of SARS-CoV-2 in untreated wastewaters in Italy. Science of The Total Environment, 736, 139652. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139652 | spa |
dc.relation.references | Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382(13), 1199-1207. https://doi.org/10.1056/NEJMoa2001316 | spa |
dc.relation.references | Mao, K., Zhang, K., Du, W., Ali, W., Feng, X., & Zhang, H. (2020). The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science & Health, 17, 1-7. https://doi.org/https://doi.org/10.1016/j.coesh.2020.04.006 | spa |
dc.relation.references | Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environmental Science & Technology Letters, 7(7), 511-516. https://doi.org/10.1021/acs.estlett.0c00357 | spa |
dc.relation.references | Mezzanotte, V., Antonelli, M., Citterio, S., & Nurizzo, C. (2007). Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light. Water Environment Research : A Research Publication of the Water Environment Federation, 79(12), 2373-2379. https://doi.org/10.2175/106143007x183763 | spa |
dc.relation.references | Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2020). Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. Journal of Environmental Chemical Engineering, 8(5), 104306. https://doi.org/https://doi.org/10.1016/j.jece.2020.104306 | spa |
dc.relation.references | Montaña, J. (2015). Aproximación metagenómica para la identificación de enzimas lipolíticas en suelo de busque alto andino del parque nacional natural los nevados. 1-127. https://repository.javeriana.edu.co/handle/10554/17002 | spa |
dc.relation.references | Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K. K., Wilkinson, R., & Wiedenheft, B. (2020a). Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Reports Medicine, 1(6), 100098. https://doi.org/10.1016/j.xcrm.2020.100098 | spa |
dc.relation.references | Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K. K., Wilkinson, R., & Wiedenheft, B. (2020b). Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Reports Medicine, 1(6), 100098. https://doi.org/https://doi.org/10.1016/j.xcrm.2020.100098 | spa |
dc.relation.references | Panchal, D., Tripathy, P., Prakash, O., Sharma, A., & Pal, S. (2021). SARS-CoV-2: Fate in water environments and sewage surveillance as an early warning system. Water Science and Technology, 84(1), 1-15. https://doi.org/10.2166/wst.2021.146 | spa |
dc.relation.references | Peccia, J., Zulli, A., Brackney, D. E., Grubaugh, N. D., Kaplan, E. H., Casanovas-Massana, A., Ko, A. I., Malik, A. A., Wang, D., Wang, M., Warren, J. L., Weinberger, D. M., Arnold, W., & Omer, S. B. (2020). Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology, 38(10), 1164-1167. https://doi.org/10.1038/s41587-020-0684-z | spa |
dc.relation.references | Perera, C. L., & Acevedo, A. M. (2018). Nuevas tendencias en el diagnóstico de enfermedades virales en los animales New trends in the diagnosis of animal viral diseases. Revista de Salud Animal, 40(3), 1-10. | spa |
dc.relation.references | Phan, L. T., Nguyen, T. V, Luong, Q. C., Nguyen, T. V, Nguyen, H. T., Le, H. Q., Nguyen, T. T., Cao, T. M., & Pham, Q. D. (2020). Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. New England Journal of Medicine, 382(9), 872-874. https://doi.org/10.1056/NEJMc2001272 | spa |
dc.relation.references | Qiu, Y., Lee, B. E., Neumann, N., Ashbolt, N., Craik, S., Maal-Bared, R., & Pang, X. L. (2015). Assessment of human virus removal during municipal wastewater treatment in Edmonton, Canada. Journal of Applied Microbiology, 119(6), 1729-1739. https://doi.org/10.1111/jam.12971 | spa |
dc.relation.references | Randazzo, Walter, E., Sanjuan, R., Domingo-Calap, P., & Sanchez, G. (2020). Metropolitan Wastewater Analysis for COVID-19 Epidemiological Surveillance. medRxiv. https://doi.org/10.1101/2020.04.23.20076679 | spa |
dc.relation.references | Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, A., & Sánchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Research, 181. https://doi.org/10.1016/j.watres.2020.115942 | spa |
dc.relation.references | Rimoldi, S. G., Stefani, F., Gigantiello, A., Polesello, S., Comandatore, F., Mileto, D., Maresca, M., Longobardi, C., Mancon, A., Romeri, F., Pagani, C., Cappelli, F., Roscioli, C., Moja, L., Gismondo, M. R., & Salerno, F. (2020). Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Science of The Total Environment, 744, 140911. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140911 | spa |
dc.relation.references | Rusiñol, M., Martínez-Puchol, S., Forés, E., Itarte, M., Girones, R., & Bofill-Mas, S. (2020). Concentration methods for the quantification of coronavirus and other potentially pandemic enveloped virus from wastewater. Current Opinion in Environmental Science & Health, 17, 21-28. https://doi.org/https://doi.org/10.1016/j.coesh.2020.08.002 | spa |
dc.relation.references | Saba, B., Hasan, S. W., Kjellerup, B. V., & Christy, A. D. (2021). Capacity of existing wastewater treatment plants to treat SARS-CoV-2. A review. Bioresource Technology Reports, 15(June), 100737. https://doi.org/10.1016/j.biteb.2021.100737 | spa |
dc.relation.references | Sandin, D., & Algorta, G. (2003). Métodos de estudio de bacterias y virus Métodos diagnósticos. Temas De Bacteriología Y Virología Médica, 81-98. | spa |
dc.relation.references | SanJuan-Reyes, S., Gómez-Oliván, L. M., & Islas-Flores, H. (2021). COVID-19 in the environment. Chemosphere, 263, 127973. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127973 | spa |
dc.relation.references | Senante, M. M., Sancho, F. H., & Garrido, R. S. (2012). Estado actual y evolución del saneamiento y la depuración de aguas residuales en el contexto nacional e internacional. Anales de Geografia de la Universidad Complutense, 32(1), 69-89. https://doi.org/10.5209/rev-AGUC.2012.v32.n1.39309 | spa |
dc.relation.references | Serra-Compte, A., González, S., Arnaldos, M., Berlendis, S., Courtois, S., Loret, J. F., Schlosser, O., Yáñez, A. M., Soria-Soria, E., Fittipaldi, M., Saucedo, G., Pinar-Méndez, A., Paraira, M., Galofré, B., Lema, J. M., Balboa, S., Mauricio-Iglesias, M., Bosch, A., Pintó, R. M., … Litrico, X. (2021). Elimination of SARS-CoV-2 along wastewater and sludge treatment processes. Water Research, 202, 117435. https://doi.org/https://doi.org/10.1016/j.watres.2021.117435 | spa |
dc.relation.references | Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91-98. https://doi.org/https://doi.org/10.1016/j.jare.2020.03.005 | spa |
dc.relation.references | Simmons, F. J., & Xagoraraki, I. (2011). Release of infectious human enteric viruses by full-scale wastewater utilities. Water Research, 45(12), 3590-3598. https://doi.org/https://doi.org/10.1016/j.watres.2011.04.001 | spa |
dc.relation.references | Sims, N., & Kasprzyk-hordern, B. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information . January. | spa |
dc.relation.references | Sims, N., & Kasprzyk-Hordern, B. (2020). Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environment International, 139, 105689. https://doi.org/https://doi.org/10.1016/j.envint.2020.105689 | spa |
dc.relation.references | Solanet, M. A. (2020). Pandemia : los desafíos múltiples que en el presente le plantea al porvenir. January. | spa |
dc.relation.references | Templeton, M. R., Andrews, R. C., & Hofmann, R. (2005). Inactivation of particle-associated viral surrogates by ultraviolet light. Water Research, 39(15), 3487-3500. https://doi.org/10.1016/j.watres.2005.06.010 | spa |
dc.relation.references | Thompson, J. R., Nancharaiah, Y. V, Gu, X., Lee, W. L., Rajal, V. B., Haines, M. B., Girones, R., Ng, L. C., Alm, E. J., & Wuertz, S. (2020). Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Research, 184, 116181. https://doi.org/https://doi.org/10.1016/j.watres.2020.116181 | spa |
dc.relation.references | Troncoso, A., Cueto, O. A., Rivera, J. H., & Herrera, J. R. (2020). Un breve análisis de la mortalidad del Covid-19 en países de América Latina A brief analysis of Covid-19 mortality in Latin American countries. 2(1), 1-7. | spa |
dc.relation.references | van Doorn, A. S., Meijer, B., Frampton, C. M. A., Barclay, M. L., & de Boer, N. K. H. (2020). Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Alimentary Pharmacology and Therapeutics, 52(8), 1276-1288. https://doi.org/10.1111/apt.16036 | spa |
dc.relation.references | Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA, 323(11), 1061-1069. https://doi.org/10.1001/jama.2020.1585 | spa |
dc.relation.references | Wang, J., Feng, H., Zhang, S., Ni, Z., Ni, L., Chen, Y., Zhuo, L., Zhong, Z., & Qu, T. (2020). SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital. International Journal of Infectious Diseases, 94(January 2019), 103-106. https://doi.org/10.1016/j.ijid.2020.04.024 | spa |
dc.relation.references | Westhaus, S., Weber, F.-A., Schiwy, S., Linnemann, V., Brinkmann, M., Widera, M., Greve, C., Janke, A., Hollert, H., Wintgens, T., & Ciesek, S. (2021). Detection of SARS-CoV-2 in raw and treated wastewater in Germany – Suitability for COVID-19 surveillance and potential transmission risks. Science of The Total Environment, 751, 141750. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141750 | spa |
dc.relation.references | Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., Yin, H., Xiao, Q., Tang, Y., Qu, X., Kuang, L., Fang, X., Mishra, N., Lu, J., Shan, H., Jiang, G., & Huang, X. (2020). Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. The Lancet Gastroenterology and Hepatology, 5(5), 434-435. https://doi.org/10.1016/S2468-1253(20)30083-2 | spa |
dc.relation.references | Wurtzer, S., Marechal, V., Mouchel, J. M., Maday, Y., Teyssou, R., Richard, E., Almayrac, J. L., & Moulin, L. (2020). Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv. https://doi.org/10.1101/2020.04.12.20062679 | spa |
dc.relation.references | Wurtzer, Sebastien, Marechal, V., Mouchel, J.-M., Maday, Y., Teyssou, R., Richard, E., Almayrac, J. L., & Moulin, L. (2020). Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. medRxiv, 2020.04.12.20062679. https://doi.org/10.1101/2020.04.12.20062679 | spa |
dc.relation.references | Yeo, C., Kaushal, S., & Yeo, D. (2020). Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? The Lancet Gastroenterology and Hepatology, 5(4), 335-337. https://doi.org/10.1016/S2468-1253(20)30048-0 | spa |
dc.relation.references | Zanetti, F., De Luca, G., & Sacchetti, R. (2006). Microbe removal in secondary effluent by filtration. Annals of Microbiology, 56(4), 313. https://doi.org/10.1007/BF03175023 | spa |
dc.relation.references | Zhang, D., Ling, H., Huang, X., Li, J., Li, W., Yi, C., Zhang, T., Jiang, Y., He, Y., Deng, S., Zhang, X., Wang, X., Liu, Y., Li, G., & Qu, J. (2020). Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Science of The Total Environment, 741, 140445. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140445 | spa |
dc.relation.references | Zhang, D., Yang, Y., Huang, X., Jiang, J., Li, M., Zhang, X., Ling, H., Li, J., Liu, Y., Li, G., Li, W., Yi, C., Zhang, T., Jiang, Y., Xiong, Y., He, Z., Wang, X., Deng, S., Zhao, P., & Qu, J. (2020). SARS-CoV-2 spillover into hospital outdoor environments. medRxiv, 2020.05.12.20097105. https://doi.org/10.1101/2020.05.12.20097105 | spa |
dc.relation.references | Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., Lou, Y., Gao, D., Yang, L., He, D., & Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases, 92, 214-217. https://doi.org/https://doi.org/10.1016/j.ijid.2020.01.050 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.subject.lemb | Aguas residuales - Investigaciones | |
dc.subject.lemb | COVID 19 - Virus - Investigaciones | |
dc.subject.lemb | Virus - COVID 19 - Investigaciones | |
dc.subject.lemb | Epidemiología - Control - Investigaciones | |
dc.subject.lemb | Pandemia - Colombia- Investigaciones | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |